Skip to main content
Log in

Preparation and characterization of α-tocopherol nanocapsules based on gum Arabic-stabilized nanoemulsions

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The preparation of water dispersed α-tocopherol nanocapsules through solvent-displacement technique using gum Arabic (GA) as natural stabilizing and emulsifying biopolymer, for a first time was aimed in current research. The effects of GA concentrations on physicochemical and biological characteristics of prepared nanocapsules, namely, mean particle size, size distribution, zeta potential, rheological properties, turbidity, in vitro antioxidant activity and cellular uptake were evaluated, subsequently. The result indicated that the mono modal size distributed water dispersible α-tocopherol nanocapsules could be successfully attained using selected technique in sizes ranged from 10.01 to 171.2 nm and zeta potential of − 13.5 to − 47.8 mv. The prepared nanocapsules showed the dilatant rheological properties and acceptable radical scavenging (antioxidant activity). The cellular uptake of samples were increased up to 12 times more than microsized α-tocopherol. Consequently, the prepared water dispersed nanosized α-tocopherol can effectively be used in water based food and beverage formulations as nutrition enhancer or natural preservatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anarjan N, Jaberi N, Yeganeh-Zare S, Banafshehchin E, Rahimirad A, and Jafarizadeh-Malmiri H. Optimization of mixing parameters for α-tocopherol nanodispersions prepared using solvent displacement method. J. Am. Oil Chem. Soc. 91: 1397–1405 (2014)

    Article  CAS  Google Scholar 

  • Anarjan N, Nehdi IA, and Tan CP. Influence of astaxanthin, emulsifier and organic phase concentration on physicochemical properties of astaxanthin nanodispersions. Chem. Cent. J. 7: 1–11 (2013)

    Article  CAS  Google Scholar 

  • Anarjan N, and Tan C. Physico-chemical stability of astaxanthin nanodispersions prepared with polysaccharides as stabilizing agents. Int. J. Food Sci. Technol. 64: 744–748 (2013a)

    CAS  Google Scholar 

  • Anarjan N, and Tan CP. Developing a three component stabilizer system for producing astaxanthin nanodispersions. Food Hydrocoll. 30: 437–447 (2013b)

    Article  CAS  Google Scholar 

  • Anarjan N, Tan CP, Ling TC, Lye KL, Malmiri HJ, Nehdi IA, Baharin BS. Effect of organic-phase solvents on physicochemical properties and cellular uptake of astaxanthin nanodispersions. J. Agric. Food. Chem. 59: 8733–8741 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Anarjan N, Tan CP, Nehdi IA, and Ling TC. Colloidal astaxanthin: preparation, characterisation and bioavailability evaluation. Food Chem. 135: 1303–1309 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Byun Y, Whiteside S, Cooksey K, Darby D, and Dawson PL. α-Tocopherol-loaded polycaprolactone (PCL) nanoparticles as a heat-activated oxygen scavenger. J. Agric. Food. Chem. 59: 1428–1431 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Delahaije RJBM, Gruppen H, Giuseppin MLF, and Wierenga PA. Towards predicting the stability of protein-stabilized emulsions. Adv. Colloid Interface Sci. 219: 1–9 (2015)

    Article  CAS  Google Scholar 

  • Derkach SR. Rheology of emulsions. Adv. Colloid Interface Sci. 151: 1–23 (2009)

    Article  CAS  Google Scholar 

  • Gomes GVL, Sola MR, Marostegan LFP, Jange CG, Cazado CPS, Pinheiro AC, Vicente AA, Pinho SC. Physico-chemical stability and in vitro digestibility of beta-caroteneloaded lipid nanoparticles of cupuacu butter (Theobroma grandiflorum) produced by the phase inversion temperature (PIT) method. J. Food Eng. 192: 93–102 (2017)

    Article  CAS  Google Scholar 

  • Hou Y, Hu J, Park H, and Lee M. Chitosan-based nanoparticles as a sustained protein release carrier for tissue engineering applications. J. Biomed. Mater. Res. A 100: 939–947 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • İbanoğlu E. Rheological behaviour of whey protein stabilized emulsions in the presence of gum arabic. J. Food Eng. 52: 273–277 (2002)

    Article  Google Scholar 

  • Jafari SM, Paximada P, Mandala I, Assadpour E, and Mehrnia MA. Encapsulation by nanoemulsions. In: Nanoencapsulation technologies for the food and nutraceutical industries. S M Jafari (ed.). Academic Press, Cambridge, pp 36–73 (2017)

    Chapter  Google Scholar 

  • Jo Y-J, and Kwon Y-J. Characterization of β-carotene nanoemulsions prepared by microfluidization technique. Food Sci. Biotechnol. 23: 107–113 (2014)

    Article  CAS  Google Scholar 

  • Kaur K, Kaur J, Kumar R, and Mehta SK. Formulation and physiochemical study of α-tocopherol based oil in water nanoemulsion stabilized with non toxic, biodegradable surfactant: sodium stearoyl lactate. Ultrason. Sonochem. 38: 570–578 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Kelly AL, and Miao S. Bioaccessibility and cellular uptake of β-carotene encapsulated in model o/w emulsions: Influence of initial droplet size and emulsifiers. Nanomaterials-Basel. 7: 282–293 (2017)

    Article  CAS  PubMed Central  Google Scholar 

  • Mao L, Xu D, Yang J, Yuan F, Gao Y, and Zhao, J. Effects of small and large molecule emulsifiers on the characteristics of β-carotene nanoemulsions prepared by high pressure homogenization. Food Technol. Biotechnol. 47: 336–342 (2009)

    CAS  Google Scholar 

  • McClements DJ. Nanoemulsion-based oral delivery systems for lipophilic bioactive components: nutraceuticals and pharmaceuticals. Ther. Deliv. 4: 841–857 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Mirhosseini H, Tan CP, Hamid NSA, and Yusof S. Optimization of the contents of arabic gum, xanthan gum and orange oil affecting turbidity, average particle size, polydispersity index and density in orange beverage emulsion. Food Hydrocoll. 22: 1212–1223 (2008)

    Article  CAS  Google Scholar 

  • Mozafari MR, Khosravi-Darani K, Borazan GG, Cui J, Pardakhty A, Yurdugul S. Encapsulation of food ingredients using nanoliposome technology. Int. J. Food Prop. 11: 833–844 (2008)

    Article  CAS  Google Scholar 

  • Park EY, Murakami H, and Matsumura Y. Effects of the addition of amino acids and peptides on lipid oxidation in a powdery model system. J. Agric. Food. Chem. 53: 8334–8341 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Phillips AO, and Phillips GO. Biofunctional behaviour and health benefits of a specific gum arabic. Food Hydrocoll. 25: 165–169 (2011)

    Article  CAS  Google Scholar 

  • Ribeiro AJ, de Souza FRL, Bezerra JMNA, Oliveira C, Nadvorny D, de La Roca Soares MF, Soares Sobrinho JL. Gums’ based delivery systems: Review on cashew gum and its derivatives. Carbohydr. Polym. 147: 188–200 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro HS, Guerrero JMM, Briviba K, Rechkemmer G, Schuchmann HP, and Schubert H. Cellular uptake of carotenoid-loaded oil-in-water emulsions in colon carcinoma cells in vitro. J. Agric. Food. Chem. 54: 9366–9369 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Shu G, Khalid N, Chen Z, Neves MA. Formulation and characterization of astaxanthin-enriched nanoemulsions stabilized using ginseng saponins as natural emulsifiers. Food Chem. 255: 67–74 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Tan CP, and Nakajima M. Β-carotene nanodispersions: preparation, characterization and stability evaluation. Food Chem. 92: 661–671 (2005)

    Article  CAS  Google Scholar 

  • Tan TB, Yussof NS, Abas F, Mirhosseini H, Nehdi IA, Tan CP, Comparing the formation of lutein nanodispersion prepared by using solvent displacement method and high-pressure valve homogenization: effects of formulation parameters. J. Food Eng. 177: 65–71 (2016)

    Article  CAS  Google Scholar 

  • Teixeira MC, Severino P, Andreani T, Boonme P, Santini A, Silva AM, and Souto EB. D-α-tocopherol nanoemulsions: size properties, rheological behavior, surface tension, osmolarity and cytotoxicity. Saudi Pharm. J. 25: 231–235 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Trau D, and Renneberg R. Encapsulation of glucose oxidase microparticles within a nanoscale layer-by-layer film: immobilization and biosensor applications. Biosens. Bioelectron. 18: 1491–1499 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Weissmueller NT, Lu HD, Hurley A, and Prud’homme RK, Nanocarriers from GRAS zein proteins to encapsulate hydrophobic actives. Biomacromolecules 17: 3828–3837 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, and McClements DJ. Encapsulation of vitamin E in edible emulsions fabricated using a natural surfactant. Food Hydrocoll. 30: 712–720 (2013)

    Article  CAS  Google Scholar 

  • Yin L-J, Chu B-S, Kobayashi I, and Nakajima M. Performance of selected emulsifiers and their combinations in the preparation of β-carotene nanodispersions. Food Hydrocoll. 23: 1617–1622 (2009)

    Article  CAS  Google Scholar 

  • Yuan Y, Gao Y, Mao L, and Zhao J. Optimisation of conditions for the preparation of β-carotene nanoemulsions using response surface methodology. Food Chem. 107: 1300–1306 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This manuscript have not received any fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navideh Anarjan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, S., Anarjan, N. Preparation and characterization of α-tocopherol nanocapsules based on gum Arabic-stabilized nanoemulsions. Food Sci Biotechnol 28, 413–421 (2019). https://doi.org/10.1007/s10068-018-0478-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0478-y

Keywords

Navigation