Skip to main content
Log in

Determination and risk characterization of polycyclic aromatic hydrocarbons of tea by using the Margin of Exposure (MOE) approach

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Tea is one of the most frequently consumed drinks due to its favourite taste and the health benefit. Tea is produced by several processes and drying is very important step to develop the flavour and destroys the enzymes in tea. However, during drying tea, polycyclic aromatic hydrocarbons some of which are carcinogen and genotoxin are naturally produced. The risk of PAHs by drinking tea was characterized by determining contents of 4 PAHs in tea. 4 PAHs including Benz(a)anthracene (BaA), Chrysene (CHR), Benzo(b)fluoranthene (BbF) and Benzo(a)pyrene (BaP) were investigated by GC–MS in total 468 tea products, which were contaminated up to 4.63 ng g−1. Mate tea was the most highly contaminated by BaA, CHR, BbF and BaP and followed by Solomon’s seal and Chrysanthemum. The Margin of Exposures calculated by the concentration of BaA, CHR, BbF and BaP and consumption amount of tea were higher than 10,000, and the risk of PAHs in tea were low concern to public health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abd El-Aty AM, Choi JH, Rahman MM, Kim SW, Tosun A, Shim JH. Residues and contaminants in tea and tea infusions: a review. Food Addit. Contam. A. 31(11): 1794-1804 (2014)

    Article  CAS  Google Scholar 

  • Adisa A, Jimenez A, Woodham C, Anthony K, Nguyen T, Saleh MA. Determination of polycyclic aromatic hydrocarbons in dry tea. J. Environ. Sci. Health B. 50: 552-559 (2015)

    Article  CAS  Google Scholar 

  • Alomirah H, Al-Zenki S, Husain A, Sawaya W, Ahmed N, Gevao B, Kannan K. Benzo(a)pyrene and total polycyclic aromatic hydrocarbons (PAHs) levels in vegetable oils and fats do not reflect the occurrence of the eight genotoxic PAHs. Food Addit. Contam. 27(6): 869-878 (2010)

    Article  CAS  Google Scholar 

  • Balenovic J, Petrovic I, Perkovac M. Determination of polycyclic aromatic hydrocarbons in vegetable oils. pp. 275-281. In: The European Conference on Food Chemistry. Vienna, Austria. Euro Food Chem. VIII (1995)

  • Banerjee H, Ganguly P, Roy S, Banerjee D, Paramasivam M, Banerjee T, Sharma KK. Persistence and safety risk assessment of propineb in Indian tea. Environ. Monit. Assess. 170: 311-314 (2010)

    Article  Google Scholar 

  • Benford D, Bolger PM, Carthew P, Coulet M, DiNovi M, Leblanc JC, Renwick AG, Setzer W, Schlatter J, Smith B, Slob W, Williams G, Wildemann T. Application of the Margin of Exposure(MOE) approach to substances in food that genotoxic and carcinogenic. Food Chem. Toxicol. 48: S2-S24 (2010a)

    Article  CAS  Google Scholar 

  • Benford D, DiNovi M, Setzer RW. Application of the Margin-of-Exposure (MoE) approach to substances in food that are genotoxic and carcinogenic e.g.: Benzo(a)pyrene and polycyclic aromatic hydrocarbons. Food Chem. Toxicol. 48: S42-S48 (2010b)

    Article  CAS  Google Scholar 

  • Boffetta P, Jourenkova N, Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control. 8: 444-472 (1997)

    Article  CAS  Google Scholar 

  • Butt MS, Sultan MT. Green tea: nature’s defense against malignancies. Crit. Rev. Food Sci. Nutr. 49: 463-473 (2009)

    Article  CAS  Google Scholar 

  • European Commission. Commission regulation (EC) No. 208/2005 of 4 February 2005 amending regulation (EC) No. 466/2001 as regards polycyclic aromatic hydrocarbons. Official Journal of the European Union. European Commission, Brussels (2005)

  • European Commission. Commission regulation (EC) No. 835/2011 of 19 August 2011 amending regulation (EC) No. 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Official Journal of the European Union. European Commission, Brussels (2011)

  • European Food Safety Authority (EFSA). Polycyclic aromatic hydrocarbons in food. Scientific opinion of the panel on contaminants in the food chain. EFSA J. 724: 1-114 (2008)

    Google Scholar 

  • Gertz C, Kogelheide H. Investigation and legal evaluation of polycyclic aromatic hydrocarbon in vegetable fats and oils. Fat Sci. Technol. 96: 175-180 (1994)

    CAS  Google Scholar 

  • Global Evnironment Monitoring System-Food contamination. Monitoring and Assessment Program (GEMS/Food)-EURO. In: GEMS/Food-EURO Second Workshop on Reliable evaluation of low level contamination of food. May 26-27, Kulmbach, Germnay (1995)

  • International Agency for Research on Cancer (IARC). Monographs on the evaluation of carcinogenic risk to humans, overall evaluations of carcinogenicity. IARC Monogr. Eval. Carcinogen. Risks Hum. Suppl. 92: 33-814 (2010)

  • Jiang D, Xin C, Li W, Chen J, Li F, Chu Z, Xiao P, Shao L. Quantitative analysis and health risk assessment of polycyclic aromatic hydrocarbons in edible oils marketed in Shandong of China. Food Chem. Toxicol. 83: 61-67 (2015)

    Article  CAS  Google Scholar 

  • Jira W, Ziegenhals K, Speer K. Gas chromatography-mass spectrometry (GC-MS) method for the determination of 16 European priority polycyclic aromatic hydrocarbons in smoked meat products and edible oils. Food Addit. Contam. 25(6): 704-713 (2008)

    Article  CAS  Google Scholar 

  • Join FAO/WHO Expert Committee on Food Additives (JECFA). Summary and conclusions of the sixty-fourth meeting of the Joint FAO/WHO expert Committee on Food Additives, WHO Food Additives Series No. 30. World Health Organization (WHO), Geneva (2005)

  • Kamangar F, Schantz MM, Abent CC, Fagundes RB, Dawsey SM. High levels of carcinogenic polycyclic aromatic hydrocarbons in mate drinks. Cancer Epidemiol. Biomark. Prev. 17(5): 1262-1268 (2008)

    Article  CAS  Google Scholar 

  • Kao TH, Chen S, Huang CW, Chen CJ, Chen BH. Occurrence and exposure to polycyclic aromatic hydrocarbons in kindling-free-charcoal grilled meat products in Taiwan. Food Chem. Toxicol. 71: 149-158 (2014)

    Article  CAS  Google Scholar 

  • Krajian H, Odeh A. Polycyclic aromatic hydrocarbons in medicinal plants from Syria. Toxicol. Environ. Chem. 95(6): 942-953 (2013)

    Article  CAS  Google Scholar 

  • Lagerqvist A, Håkansson D, Frank H, Seidel A, Jenssen D. Structural requirements for mutation formation from polycyclic aromatic hydrocarbon dihydroldiol epoxides in their interaction with food chemopreventive compounds. Food Chem. Toxicol. 49: 879-886 (2011)

    Article  CAS  Google Scholar 

  • Lee JG, Kim SY, Moon JS, Kim SH, Kang DH, Yoon HJ. Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chem. 199: 632-638 (2016a)

    Article  CAS  Google Scholar 

  • Lee JG, Park SK, Yoon HJ, Kang DH, Kim MH. Exposure assessment and risk characterisation of ethyl carbamate from Korean traditional fermented rice wine, Takju and Yakju. Food Addit. Contam. A. 33(2): 207-214 (2016b)

    CAS  Google Scholar 

  • Lijinsky W. The formation and occurrence of polynuclear aromatic hydrocarbons associated with food. Mutat. Res. 259: 251-261 (1991)

    Article  CAS  Google Scholar 

  • Lin D, Tu Y, Zhu L. Concentration and health risk of polycyclic aromatic hydrocarbons in tea. Food Chem. Toxicol. 43: 41-48 (2005)

    Article  CAS  Google Scholar 

  • Lin D, Zhu L. Factors affecting transfer of polycyclic aromatic hydrocarbons from Mate tea to tea infusion. J. Agric. Food Chem. 54: 4350-4354 (2006)

    Article  CAS  Google Scholar 

  • Londoño VAG, Reynoso M, Resnik S. Polycyclic aromatic hydrocarbons (PAHs) in yerba mate (Ilex paraguariensis) from the Argentinean market. Food Addit. Contam. B. 7(4): 247-253 (2014)

    Article  Google Scholar 

  • Longwell JP. The formation of polycyclic aromatic hydrocarbons by combustion. Vol. 19, No. 1, pp. 1339-1350. In: Symposium (International) on Combustion (1982)

    Article  Google Scholar 

  • Magnusson B, Qrnemark U. Eurachem guide: the fitness for purpose of analytical methods, a laboratory guide to method validation and related topics. 2nd ed. Eurachem Working Group, (2014)

  • Martí-Cid R, Llobet JM, Castell V, Domingo JL. Evolution of the dietary exposure to polycyclic aromatic hydrocarbons in Catalonia, Spain. Food Chem. Toxicol. 46: 3163-3171 (2008)

    Article  Google Scholar 

  • Ministry of Food and Drug Safety (MFDS). Food Code. MFDS, Seoul, South Korea (2016)

  • Nisbet ICT, Lagoy PK. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 16: 290-300 (1992)

    Article  CAS  Google Scholar 

  • Özcan M, Arslan D, Ünver A. Effect of drying methods on the mineral content of basil (Ocimum basilicum L.). J. Food Eng. 69: 375-379 (2005)

    Article  Google Scholar 

  • Pincemaille J, Schummer C, Heinen E, Moris G. Determination of polycyclic aromatic hydrocarbons in smoked and non-smoked black teas and tea infusions. Food Chem. 145: 807-813 (2014)

    Article  CAS  Google Scholar 

  • Plaza-Bolaños P, Frenich AG, Vidal JLM. Polycyclic aromatic hydrocarbons in food and beverages. Anlytical methods and trends. J. Chromatogr. A. 1217: 6303-6326 (2010)

    Article  Google Scholar 

  • Ramesh A, Walker SA, Hood DB, Guillén MD, Schneider K, Weyand EH. Bioavalilability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int. J. Toxicol. 23: 301-333 (2004)

    Article  CAS  Google Scholar 

  • Richter H, Howard JB. Formation of polycyclic aromatic hydrocarbons and their growth to soot-a review of chemical reaction pathways. Prog. Energy Combust. Sci. 26: 565-608 (2000)

    Article  CAS  Google Scholar 

  • Schulz C, Fritz H, Ruthenschrőr A. Occurrence of 15 + 1 EU priority polycyclic aromatic hydrocarbons (PAH) in various types of tea (Camellia sinensis) and herbal infusions. Food Addit. Contam. A. 31(10): 1723-1735 (2015)

    Article  Google Scholar 

  • Singh L, Varshney JG, Agarwal T. Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food Chem. 199: 768-781 (2016)

    Article  CAS  Google Scholar 

  • Szeliga J, Dipple A. DNA adduct formation by polycyclic aromatic hydrocarbon dihydrodiol epoxides. Chem. Res. Toxicol. 11(1): 1-11 (1998)

    Article  CAS  Google Scholar 

  • Taverniers I, Loose MD, Bocksaele EV. Trends in quality in the analytical laboratory. II. Anlytical method validation and quality assurance. Trends Anal. Chem. 23(8): 535-552 (2004)

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (EPA). Guidelines establishing test procedures for the analysis of pollutants. 49,209. Fed Reg, Washington, DC, USA (1983)

  • Venskutonis PR. Effect of drying on the volatile constituents of thyme (Thymus vulgaris L.) and sage (Salvia officinalis L.). Food Chem. 59(2): 219-227 (1997)

    Article  CAS  Google Scholar 

  • Veyrand B, Brosseaud A, Sarcher L, Varlet V, Monteau F, Philippe M, Andre F, Bizec BL. Innovative method for determination of 19 polycyclic aromatic hydrocarbons in food and oil samples using gas chromatography coupled to tandem mass spectrometry based on an isotope dilution approach. J. Chromatogr. A. 1149: 333-344 (2007)

    Article  CAS  Google Scholar 

  • Vieira MA, Maraschin MM, Rovaris ÂA, Amboni RDDMC, Pagliosa CM, Xavier JJM, Amante ER. Occurrence of polycyclic aromatic hydrocarbons throughout the processing stages of erva-mate (Ilex paraguariensis). Food Addit. Contam. 27(6): 776-782 (2010)

    Article  CAS  Google Scholar 

  • Wang ZM, Zhou B, Wang YS, Gong QY, Wang QM, Yan JJ, Gao W, Wang LS. Black and Green tea consumption and the risk of coronary artery disease: a meta-analysis. Am. J. Clin. Nutr. 93: 506-515 (2011)

    Article  CAS  Google Scholar 

  • Yu L, Cao Y, Zhang J, Cui Z, Sun H. Isotope dilution-GC-MS/MS analysis of 16 polycyclic aromatic hydrocarbons in selected medicinal herbs used as health food additives. Food Addit. Contam. A. 29(11): 1800-1809 (2012)

    Article  CAS  Google Scholar 

  • Zhao Z, Zhang L, Cai Y, Chem Y. Distribution of polycyclic aromatic hydrocarbon (PAH) residues in several tissues of edible fishes from the largest freshwater lake in China, Poyang Lake, and associated human health risk assessment. Ecotoxicol. Environ. Saf. 104: 323-331 (2014)

    Article  CAS  Google Scholar 

  • Zelinkova Z, Wenzi T. The occurrence of 16 EPA PAHs in food – a review. Polycycl. Aromat. Compd. 35: 248-284 (2015)

    Article  CAS  Google Scholar 

  • Ziegenhals K, Jira W, Speer K. Polycyclic aromatic hydrocarbons (PAH) in various types of tea. Eur. Food Res. Technol. 228: 83-91 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant (15161MFDS029) from Ministry of Food and Drug Safety in 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae-Jung Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JG., Lim, T., Kim, SH. et al. Determination and risk characterization of polycyclic aromatic hydrocarbons of tea by using the Margin of Exposure (MOE) approach. Food Sci Biotechnol 27, 1843–1856 (2018). https://doi.org/10.1007/s10068-018-0400-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0400-7

Keywords

Navigation