Skip to main content
Log in

Effects of aronia extract on lifespan and age-related oxidative stress in Drosophila melanogaster

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of aronia extract (AE) supplementation on the lifespan and age-associated oxidative stress was investigated in the fruit fly Drosophila melanogaster. Supplementation with 2.5 mg/mL of AE (AE 2.5) extended the mean lifespan in D. melanogaster by 18%. AE supplementation significantly improved locomotor activity at both 10 and 40 days. In 40-days-old flies, reactive oxygen species production was significantly lower and accumulation of the lipid oxidation product malondialdehyde had markedly decreased by 49.3% in the AE 2.5 group. The extended longevity and improved locomotion in the AE 2.5 group were probably because of increases in the level of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and expression of stress resistance genes (Hsp68, l(2)efl, and Jafrac1). Present study provides the evidence that dietary supplementation with AE extended lifespan and ameliorated age-related oxidative damages in D. melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iliadi KG, Knight D, Boulianne GL. Healthy aging–insights from Drosophila. Front. Psychol. http://dx.doi.org/10.3389/fphys.2012.00106 (2012)

  2. Wickens AP. Ageing and the free radical theory. Resp. Physiol. 128: 379–391 (2001)

    Article  CAS  Google Scholar 

  3. Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E. Functional senescence in Drosophila melanogaster. Ageing Res. Rev. 4: 372–397 (2005)

    Article  CAS  Google Scholar 

  4. Bauer JH, Goupil S, Garber GB, Helfand SL. An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster, Proc. Natl. Acad. Sci. U. S. A. 101: 12980–12985 (2004)

    Article  CAS  Google Scholar 

  5. Han X, Shen T, Lou H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 8: 950–988 (2007)

    Article  CAS  Google Scholar 

  6. Wu X, Gu L, Prior RL, McKay S. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J. Agric. Food Chem. 52: 7846–7856 (2004)

    Article  CAS  Google Scholar 

  7. Wang L, Li YM, Lei L, Liu Y, Wang X, Ma KY, Chen ZY. Cranberry anthocyanin extract prolongs lifespan of fruit flies. Exp. Gerontol. 69: 189–195 (2015)

    Article  CAS  Google Scholar 

  8. Peng C, Zuo Y, Kwan KM, Liang Y, Ma KY, Chan HYE, Huang Y, Yu H, Chen ZY. Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp. Gerontol. 47: 170–178 (2012)

    Article  CAS  Google Scholar 

  9. Zuo Y, Peng C, Liang Y, Ma KY, Yu H, Chan HYE, Chen ZY. Black rice extract extends the lifespan of fruit flies. Food Funct. 3: 1271–1279 (2012)

    Article  CAS  Google Scholar 

  10. Hellstorm JK, Torronen AR, Mattila PH. Proanthocyanidins in common food products of plant origin. J. Agric. Food Chem. 57: 7899–7906 (2009)

    Article  Google Scholar 

  11. Fine AM. Oligomeric proanthocyanidin complexes: history, structure, and phytopharmaceutical applications. Alter. Med. Rev. 5: 144–151 (2000)

    CAS  Google Scholar 

  12. Denev PN, Kratchanov CG, Ciz M, Lojek A, Kratchanova MG. Bioavailability and antioxidant activity of black chokeberry (Aronia melanocarpa) polyphenols: in vitro and in vivo evidences and possible mechanisms of action: A review. Comp. Rev. Food Sci. Food Safety 11: 471–488 (2012)

    Article  CAS  Google Scholar 

  13. Xu BJ, Yuan SH, Chang SKC. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J. Food Sci. 72: S167–177 (2007)

    Article  CAS  Google Scholar 

  14. Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81: 321–326 (2003)

    Article  CAS  Google Scholar 

  15. Lee J, Rennaker C, Wrolstad RE. Correlation of two anthocyanin quantification methods: HPLC and spectrophotometric methods. Food Chem. 110: 782–786 (2008)

    Article  CAS  Google Scholar 

  16. Sun B, Ricardo-da-Silva JM, Spranger I. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 46: 4267–4274 (1998)

    Article  CAS  Google Scholar 

  17. Smith P, Krohn RI, Hermanson G, Mallia A, Gartner F, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76–85 (1985)

    Article  CAS  Google Scholar 

  18. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351–358 (1979)

    Article  CAS  Google Scholar 

  19. Park JH, Jung JW, Ahn YJ, Kwon HW. Neuroprotective properties of phytochemicals against paraquat-induced oxidative stress and neurotoxicity in Drosophila melanogaster. Pestic. Biochem. Physiol. 104: 118–125 (2012)

    Article  CAS  Google Scholar 

  20. Hwang SJ, Yoon WB, Lee OH, Cha SJ, Kim JD. Radical-scavenging-linked antioxidant activities of extracts from black chokeberry and blueberry cultivated in Korea. Food Chem. 146: 71–77 (2014)

    Article  CAS  Google Scholar 

  21. Bijak M, Borowski M, Borowiecka M, Podsedek A, Golanski J, Nowak P. Anticoagulant effect of polyphenols-rich extracts from black chokeberry and grape seeds. Fitoterapia 82: 811–817 (2011)

    Article  CAS  Google Scholar 

  22. Kulling SE, Rawel HM. Chokeberry (Aronia melanocarpa) –A review on the characteristic components and potential health effects. Planta Med. 74: 1625–1634 (2008)

    Article  CAS  Google Scholar 

  23. Rugina D, Sconta Z, Leopold L, Pintea A, Bunea A, Socaciu C. Antioxidant activities of chokeberry extracts and the cytotoxic action of their anthocyanin fraction on Hela human cervical tumor cells. J. Med. Food 15: 700–706 (2012)

    Article  CAS  Google Scholar 

  24. Simon AF, Liang DF, Krantz DE. Differential decline in behavioral performance of Drosophila melanogaster with age. Mech. Ageing Dev. 127: 647–651 (2006)

    Article  Google Scholar 

  25. Jones MA, Grotewiel M. Drosophila as a model for age-related impairment in locomotor and other behaviors. Exp. Gerontol. 46: 320–325 (2011)

    Article  Google Scholar 

  26. Lee KS, Lee BS, Semnani S, Avanesian A, Um CY, Jeon HJ, Seong KM, Yu K, Min KJ, Jafari M. Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Res. 13: 561–570 (2010)

    Article  CAS  Google Scholar 

  27. Helfand SL, Rogina B. Molecular genetics of aging in the fly: is that the end of the beginning? BioEssays 25: 3063–3073 (2003)

    Article  Google Scholar 

  28. Broncel M, Kozirog M, Duchnowicz P, Koter-Michalak M, Sikora J, Chojnowska-Jezierska J. Aronia melanocarpa extract reduces blood pressure, serum endothelin, lipid, and oxidative stress marker levels in patients with metabolic syndrome. Med. Sci. Monit. 16: CR28–34 (2009)

    Google Scholar 

  29. Peng C, Chan HYE, Huang Y, Yu H, Chen ZY. Apple polyphenols extend the mean lifespan of Drosophila melanogaster. J. Agric. Food Chem. 59: 2097–2106 (2011)

    Article  CAS  Google Scholar 

  30. Li YM, HYE Chan, Huang Y, Yu H, Chen ZY. Green tea catechins upregulate superoxide dismutase and catalase in fruit flies. Mol. Nutr. Food Res. 51: 546–554 (2007)

    Article  CAS  Google Scholar 

  31. Orr W, Sohal RS. Extension of lifespan by the overexpression of superoxide-dismutase and catalase. Science 263: 1128 (1994)

    Article  CAS  Google Scholar 

  32. Paaby AB, Schmidt PS. Functional significance of allelic variation at methuselah, an aging gene in Drosophila. PLoS One 3: e1987 (2008)

    Article  Google Scholar 

  33. Lin YJ, Seroude L, Benzer S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282: 943–946 (1998)

    Article  CAS  Google Scholar 

  34. Wang MC, Bohmann D, Jasper H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121: 115–125 (2005)

    Article  CAS  Google Scholar 

  35. Biteau B, Karpac J, Supoyo S, DeGennaro M, Lehmann R, Jasper H. Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genet. 6: e1001159 (2010)

    Article  Google Scholar 

  36. Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr. 78: 517S–520S (2003)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jee-Young Imm.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, A.R., Imm, JY. Effects of aronia extract on lifespan and age-related oxidative stress in Drosophila melanogaster . Food Sci Biotechnol 26, 1399–1406 (2017). https://doi.org/10.1007/s10068-017-0180-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0180-5

Keywords

Navigation