Skip to main content
Log in

Caulerpa lentillifera inhibits protein-tyrosine phosphatase 1B and protects pancreatic beta cell via its insulin mimetic effect

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to determine whether Caulerpa lentillifea extract (CLE) can protect pancreatic beta cells and enhance insulin signaling in adipocytes. We measured the protein tyrosine phosphatase (PTP)-1B inhibitory effect of CLE using an in-vitro enzyme assay. Proteins involved in the pancreatic beta-cell death and insulin signaling were measured by western blotting. Oil-red O staining was used to measure the insulin mimetic effect of CLE. CLE strongly inhibited the PTP1B enzyme. In rat insulinoma (RIN)-m5F cells, CLE decreased the activation of extracellular regulated kinase (ERK)-1/2, P38 mitogen activated protein kinase (P38), c-Jun NH2-terminal kinase (JNK), and nuclear factor kappa-light-chain-enhancer of the activated B cells (NF-κB). Furthermore, CLE showed insulin-mimetic effect and enhanced the activation of insulin-signaling molecules including IRS, AKT, PI3K, and GSK-3β in 3T3-L1 adipocytes. Our results suggested that CLE-inhibited PTP1B, protected the pancreatic beta cells, and enhanced insulin sensitization in the adipocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 33: S62–S69 (2010)

    Article  Google Scholar 

  2. Kahn SE. The relative contributions of insulin resistance and beta cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46: 3–19 (2003)

    Article  CAS  Google Scholar 

  3. Csorba TR, Lyon AW, Hollenberg MD. Autoimmunity and the pathogenesis of type 1 diabetes. CRC Cr. Rev. Cl. Lab. Sc. 47: 51–71 (2010)

    Article  CAS  Google Scholar 

  4. Cerf ME. Beta cell dysfunction and insulin resistance. Front. Endocrinol. 4: 37 (2013)

    Article  Google Scholar 

  5. Ruiz RF, Vieira E, Garcia-Roves PM, Gomis R. Protein tyrosin phosphatase 1B modulates pancreatic beta cell mass. PLoS ONE 9: e90344 (2014)

  6. Johnson TO, Ernolieff J, Jirousek MR. Protein tyrosin phosphatase 1B inhibitors for diabetes. Nat. Rev. Drug Discov. 1: 696–709 (2002)

    Article  CAS  Google Scholar 

  7. Cragg GM, Newman DJ. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta 1830: 3670–3695 (2013)

    Article  CAS  Google Scholar 

  8. Sharma BR, Rhyu DY. Anti-diabetic effects of Caulerpa lentillifera: Stimulation of insulin secretion in pancreatic beta cells and enhancement of glucose uptake in adipocytes. Asian Pac. J. Trop. Biomed. 4: 575–580 (2014)

    Article  CAS  Google Scholar 

  9. Sharma BR. Kim HJ, Rhyu DY. Caulerpa lentillifera extract ameliorates insulin resistance and regulates glucose metabolism in C57BL/KsJ-db/db mice via PI3K/AKT signaling pathway in myocytes. J. Transl. Med. 13: 62 (2015)

    Article  Google Scholar 

  10. Sharma BR, Kim MS, Rhyu DY. Nelumbo nucifera leaf extract attenuated pancreatic beta cells toxicity induced by interleukin-1ß and interferon-?, and increased insulin secretion of pancreatic beta cells in sterptozotocin-induced diabetic rats. J. Tradit. Chin. Med. 36: 71–77 (2016)

    Article  Google Scholar 

  11. Park CH, Rhyu DY, Sharma BR, Yokazawa T. Inhibition of preadipocyte differentiation and lipid accumulation by 7-O-galloyl-D-sedoheptulose treatment in 3T3-L1 adipocytes. Biomed. Prev. Nutr. 3: 319–324 (2013)

    Article  Google Scholar 

  12. Gum RJ, Gaede LL, Koterski SL, Heindel M, Clampit JE, Zinker BA, Trevillyan JM, Ulrich RG, Jirousek MR, Rondinone CM. Reduction of protein tyrosin phosphatase 1B increases insulin dependent signaling in ob/ob mice. Diabetes 52: 21–28 (2003)

    Article  CAS  Google Scholar 

  13. Davis JA, Sharma S, Mittra S, Sujatha S, Kanaujia A, Shukla G, Katiyar C, Lakshmi BS, Bansa VS, Bhatnagar PK. Antihyperglycemic effect of Annona Squamosa hexane extract in type 2 diabetes animal model: Ptp1B inhibition, a possible mechanism of action? Indian J. Pharmacol. 44: 326–332 (2012)

    Google Scholar 

  14. Pirot P, Cardozo AK, Eizirik DL. Mediators and mechanisms of pancreatic beta cell death in type 1 diabetes. Arq. Bras. Endocrinol. Metab. 52: 156–165 (2008)

    Article  Google Scholar 

  15. AbouZid SF, Ahmed OM, Ahmed RR, Mahmoud A, Addella E, Ashour MB. Antihyperglycemic effect of crude extracts of some Egyptian plants and algae. J. Med. Food 17: 400–406 (2014).

    Article  CAS  Google Scholar 

  16. Mackenzie RW, Elliott BT. Akt/PKB activation and insulin signaling: A novel insulin-signaling pathway in the treatment of type 2 diabetes. Diabetes Metab. Syndr. Obes. 7: 55–64 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Young Rhyu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B.R., Kim, H.J. & Rhyu, D.Y. Caulerpa lentillifera inhibits protein-tyrosine phosphatase 1B and protects pancreatic beta cell via its insulin mimetic effect. Food Sci Biotechnol 26, 495–499 (2017). https://doi.org/10.1007/s10068-017-0068-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0068-4

Keywords

Navigation