Skip to main content
Log in

Comparative evaluation of free radical scavenging activities and cytotoxicity of various solvent fractions of Sandong Sageretia thea (Osbeck) M.C. Johnst. branches

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Sageretia thea (Osbeck) M.C.Johnst., an evergreen tender shrub of the Rhamnaceae, has been used as folk medicine and in traditional tea. To the best of our knowledge, this is the first study that investigates the free radical scavenging activity and cell cytotoxicity of S. thea branches. The ethyl acetate fraction and n-butanol fraction were identified to be rich in phenolic compounds exhibiting impressive antioxidant activity after stepwise partitioning of solvent fractions of the methanol extracts of S. thea branches (MB). Among the different human cancer cells tested, maximum cytotoxicity was found in MDA-MB-231 human breast cancer cells with MB, chloroform, ethyl acetate, n-butanol and water fraction. A significant (p<0.05) correlation between antioxidant activities and cytotoxicity exists in each fraction. These results suggest the branches of S. thea can be a valuable source of antioxidants, and they can serve as natural anticancer constituents in nutraceutical and pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chung SK, Kim YC, Takaya Y, Terashima K, Niwa M. Novel flavonol gycoside, 7-O-methyl mearnsitrin, from Sageretia theezans and its antioxidant effect. J. Agr. Food Chem. 52: 4664–4668 (2004)

    Article  CAS  Google Scholar 

  2. Chung SK, Chen CY, Blumberg JB. Flavonoid-rich fraction from Sageretia theezans leaves scavenges reactive oxygen radical species and increases the resistance of low-density lipoprotein to oxidation. J. Med. Food 12: 1310–1315 (2009)

    Article  CAS  Google Scholar 

  3. Park JC, Hur JM, Park JG, Hatano T, Yoshida T, Miyashiro H. Min BS, Hattori M. Inhibitory effects of Korean medicinal plants and camelliatannin H from Camellia japonica on human immunodeficiency virus type 1 protease. Phytother. Res. 16: 422–426 (2002)

    Article  Google Scholar 

  4. Li F, Li S, Li HB, Deng GF, Ling WH, Wu S, Xu XR, Chen F. Antiproliferative activity of peels, pulps and seeds of 61 fruits. J. Funct. Foods 5: 1298–1309 (2013)

    Article  Google Scholar 

  5. Ziech D, Franco R, Georgkalikas AG, Georgakila S, Malamou-Mitsi V, Schoneveld O, Pappa A, Panayiotidis MI. The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development. Chem-Biol. Interact. 188: 334–339 (2010)

    Article  CAS  Google Scholar 

  6. Garis D, Skiada V, Barbouti A. Redox signaling and cancer: the role of “labile” iron. Cancer Lett. 266: 21–29 (2008)

    Article  Google Scholar 

  7. Jambunathan S, Bangarusamy D, Padma PR, Sundaravadivelu S. Cytotoxic activity of the methanolic extract of leaves and rhizomes of Curcuma amada Roxb against breast cancer cell lines. Asian Pac. J. Trop. Med. 7: S405–S409 (2014)

    Article  Google Scholar 

  8. Fuchs-Tarlovsky V. Role of antioxidants in cancer therapy. Nutrition 29: 15–21 (2013)

    Article  CAS  Google Scholar 

  9. Kim HY, Lee SH, Hwang IG, Woo KS, Kim KJ, Lee MJ, Kim DJ, Kim TJ, Lee J, Jeong HS. Antioxidant and antiproliferation activities of winter cereal crops before and after germination. Food Sci. Biotechnol. 22: 181–186 (2013)

    Article  CAS  Google Scholar 

  10. Gomaa EZ. In vitro antioxidant, antimicrobial, and antitumor activities of bitter almond and sweet apricot (Prunus armeniaca L.) kernels. Food Sci. Biotechnol. 22: 455–463 (2013)

    Article  CAS  Google Scholar 

  11. Hwang YJ, Lee EJ, Kim HR, Hwang KA. In vitro antioxidant and anticancer effects of solvent fractions from prunella vulgaris var. lilacina. BMC Complem. Altern. Med. 13, 310 (2013)

    Article  Google Scholar 

  12. Chua MT, Tung YT, Chang ST. Antioxidant activities of ethanolic extracts from the twigs of Cinnamomum osmophloeum. Bioresource Technol. 99: 1918–1925 (2008)

    Article  CAS  Google Scholar 

  13. Tauhcehn J, Doskocil I, Caffi C, Lulekal E, Marsik P, Havlik J, Damme PV, Kokoska L. In vitro antioxidant and anti-proliferative activity of Ethiopian medicinal plant extracts. Ind. Crop. Prod. 74: 671–679 (2015)

    Article  Google Scholar 

  14. Boots AW, Haenen GR, Bast A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 585: 325–337 (2008)

    Article  CAS  Google Scholar 

  15. Radomska-Leoeniewska DM, Hevelke A, Skopiñski P, Bałan B, Jóźwiak J, Rokicki D, Skopiñska-Różewska E, Białoszewska A. Reactive oxygen species and synthetic antioxidants as angiogenesis modulator: Clinical implications. Pharmacol. Rep. 68: 462–471 (2016)

    Article  Google Scholar 

  16. Cheung LM, Cheung PCK, Ooi VEC. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 81: 249–255 (2003)

    Article  CAS  Google Scholar 

  17. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555–559 (1999)

    Article  CAS  Google Scholar 

  18. Gião MS, González-Sanjosé ML, Rivero-Pérez MD, Pereira CI, Pintado ME, Malcata FX. Infusions of Portuguese medicinal plants: Dependence of final antioxidant capacity and phenol content on extraction features. J. Sci. Food Agr. 87: 2638–2647 (2007)

    Article  Google Scholar 

  19. Hassimotto NM, Genovese MI, Lajolo FM. Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J. Agr. Food Chem. 53: 2928–2935 (2005)

    Article  CAS  Google Scholar 

  20. Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radical Bio. Med. 21: 895–902 (1996)

    Article  CAS  Google Scholar 

  21. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res. 47: 936–942 (1987)

    CAS  Google Scholar 

  22. Chen Y, Chou P. Flora of China. Vol. 12. pp. 137. In: Rhamnaceae. Chen Y, Schirarend C (eds). MBG Press, St. Louis, MO, USA (2007)

    Google Scholar 

  23. Robards K, Prenzler PD, Tucker G, Swatsitang P, Glover W. Phenolic compounds and their role in oxidative processes in fruits. Food Chem. 66: 401–436 (1999)

    Article  CAS  Google Scholar 

  24. Cha MN, Jun HI, Lee WJ, Kim MJ, Kim MK, Kim YS. Chemical composition and antioxidant activity of Korean cactus (Opuntia humifusa) fruit. Food Sci. Biotechnol. 22: 523–529 (2013)

    Article  CAS  Google Scholar 

  25. Bai Y, Li D, Zhou T, Qin N, Li Z, Yu Z, Hua H. Coumarins from the roots of Angelica dahurica with antioxidant and antiproligerative activities. J. Funct. Foods 20: 453–462 (2016)

    Article  CAS  Google Scholar 

  26. Anh TT, Krishnamoorthy K, Song YW, Cho SK, Kim SJ. Toxicity of nano molybdenum trioxide toward invasive breast cancer cells. ACS Appl. Mater. Inter. 6: 2980–2986 (2013)

    Google Scholar 

  27. Karahadian C, Lindsay RC. Evaluation of the mechanism of dilauryl thiodipropionate antioxidant activity. J. Am. Oil Chem. Soc. 65: 1159–1165 (1988)

    Article  CAS  Google Scholar 

  28. Henry GE, Momin RA, Nair MG, Dewitt DL. Antioxidant and cyclooxygenase activities of fatty acids found in food. J. Agr. Food Chem. 50: 2231–2234 (2002)

    Article  CAS  Google Scholar 

  29. Jenkins B, West JA, Koulman A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) in health and disease. Molecules 20: 2425–2444 (2015)

    Article  Google Scholar 

  30. Pejin B, Kojic V, Bogdanovic G. An insight into the cytotoxic activity of phytol at in vitro conditions. Nat. Prod. Res. 28: 2053–2056 (2014)

    Article  CAS  Google Scholar 

  31. Moreno JJ. Effect of olive oil minor components on oxidative stress and arachidonic acid mobilization and metabolism by macrophages RAW 264.7. Free Radical Bio. Med. 35: 1073–1081 (2003)

    Article  CAS  Google Scholar 

  32. Eberhardt MV, Lee CY, Liu RH. Nutrition: Antioxidant activity of fresh apples. Nature 405: 903–904 (2000)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somi Kim Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, GA., Son, M. & Cho, S.K. Comparative evaluation of free radical scavenging activities and cytotoxicity of various solvent fractions of Sandong Sageretia thea (Osbeck) M.C. Johnst. branches. Food Sci Biotechnol 25, 1683–1691 (2016). https://doi.org/10.1007/s10068-016-0259-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0259-4

Keywords

Navigation