Skip to main content
Log in

Mathematical models of pretreatment processes to utilize purple-fleshed potato (Solanum tuberosum L.) peels for anthocyanin extraction

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of particle size on the extraction rate of anthocyanin from Solanum tuberosum L. (purple-fleshed potato) peels (PFPPs) using the stagnant single-stage batch extraction system was investigated. Core pretreatment processes such as drying and grinding were quantitatively evaluated using mathematical models. The drying behavior of PFPP was successfully described using thin layer models (Page model and Midilli-Kucuk model). The effective diffusion coefficient of drying temperature at 40°C was determined to be 1.67x10−12 m2/s. The grinding time to obtain particles of a specific size was accurately estimated using the grinding kinetic model (R 2=0.97). The extraction rate of anthocyanin increased as the particle size decreased; however, when the particle size was 0.15mm, the anthocyanin content decreased. Our study demonstrated that the grinding kinetic model is useful to estimate the grinding time to produce an optimum particle size for anthocyanin extraction from PFPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andre CM, Ghislain M, Bertin P, Oufir M, Herrera Mdel R, Hoffmann L, Hausman JF, Larondelle Y, Evers D. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. J. Agr. Food Chem. 55: 366–378 (2007)

    Article  CAS  Google Scholar 

  2. Reyes LF, Cisneros-Zevallos L. Degradation kinetics and color of anthocyanins in aqueous extracts of purple-and red-flesh potatoes (Solanum tuberosum L.). Food Chem. 100: 885–894 (2007)

    Article  CAS  Google Scholar 

  3. Wang WD, Xu SY. Degradation k inetics of anthocyanins in blackberry juice and concentrate. J. Food Eng. 82: 271–275 (2007)

    Article  CAS  Google Scholar 

  4. Lachman J, Hamouz K, Orsák M, Pivec V, Hejtmánková K, Pazderu K, Dvorák P, Cepl J. Impact of selected factors–Cultivar, storage, cooking and baking on the content of anthocyanins in coloured-flesh potatoes. Food Chem. 133: 1107–1116 (2012)

    Article  CAS  Google Scholar 

  5. Djantou EB, Mbofung CM, Scher J, Desobry S. A modelling approach to determine the effect of pre-treatment on the grinding ability of dried mangoes for powder production (Mangifera indica var Kent). J. Food Eng. 80: 668–677 (2007)

    Article  Google Scholar 

  6. McCabe WL, Smith JC, Harriott P. Unit Operations of Chemical Engineering. 5th ed. McGraw-Hill, New York, NY, USA. pp. 963–964 (1993)

    Google Scholar 

  7. Walde SG, Balaswamy K, Velu V, Rao DG. Microwave drying and grinding characteristics of wheat (Triticum aestivum). J. Food Eng. 55: 271–276 (2002)

    Article  Google Scholar 

  8. Sharma P, Chakkaravarthi A, Singh V, Subramanian R. Grinding characteristics and batter quality of rice in different wet grinding systems. J. Food Eng. 88: 499–506 (2008)

    Article  Google Scholar 

  9. Lee YJ, Lee MG, Yoon WB. Effect of seed moisture content on the grinding kinetics, yield and quality of soybean oil. J. Food Eng. 119: 758–764 (2013)

    Article  CAS  Google Scholar 

  10. Song SH, Lee MG, Lee HJ, Yoon WB. Analysis of grinding kinetics to control the effect of rice flour particle size on the yield of alcohol and glucose during fermentation. Int. J. Food Sci. Tech. 49: 2703–2710 (2014)

    Article  CAS  Google Scholar 

  11. Nayak B, Berrios JDJ, Powers JR, Tang J, Ji Y. Colored potatoes (Solanum tuberosum L.) dried for antioxidant-rich value-added foods. J. Food Process. Pres. 35: 571–580 (2011)

    Article  CAS  Google Scholar 

  12. Kita A, Bakowska-Barczak A, Hamouz K, Kulakowska K, Lisinska G. The effect of frying on anthocyanin stability and antioxidant activity of crisps from red-and purple-fleshed potatoes (Solanum tuberosum L.). J. Food Compos. Anal. 32: 169–175 (2013)

    Article  CAS  Google Scholar 

  13. Lewis WK. The rate of drying of solid materials. Ind. Eng. Chem. 13: 427–432 (1921)

    Article  CAS  Google Scholar 

  14. Bruce D. Exposed-layer barley drying: Three models fitted to new data up to 150°C. J. Agr. Eng. Res. 32: 337–348 (1985)

    Article  Google Scholar 

  15. White G, Ross I, Poneleit C. Fully-exposed drying of popcorn. T. ASAE 24: 466–468 (1981)

    Article  Google Scholar 

  16. Henderson S, Pabis S. Grain drying theory I. Temperature effect on drying coefficient. J. Agr. Eng. Res. 6: 169–174 (1961)

    Google Scholar 

  17. Yaldiz O, Ertekin C, Uzun HI. Mathematical modeling of thin layer solar drying of sultana grapes. Energy 26: 457–465 (2001)

    Article  Google Scholar 

  18. Wang CY, Singh RP. A single layer drying equation for rough rice. ASAE paper No. 78-3001 (1978)

    Google Scholar 

  19. Togrul IT, Pehlivan D. Modelling of drying kinetics of single apricot. J. Food Eng. 58: 23–32 (2003)

    Article  Google Scholar 

  20. Verma LR, Bucklin R, Endan J, Wratten F. Effects of drying air parameters on rice drying models. T. ASAE 28: 296–301 (1985)

    Article  Google Scholar 

  21. Sharaf-Eldeen Y, Blaisdell J, Hamdy M. A m odel for ear corn drying. T. ASAE 23: 1261–1265 (1980)

    Article  Google Scholar 

  22. Midilli A, Kucuk H, Yapar Z. A new model for single-layer drying. Dry. Technol. 20: 1503–1513 (2002)

    Article  Google Scholar 

  23. Lee J, Durst RW, Wrolstad RE. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 88: 1269–1278 (2005)

    CAS  Google Scholar 

  24. Hashemi G, Mowla D, Kazemeini M. Moisture diffusivity and shrinkage of broad beans during bulk drying in an inert medium fluidized bed dryer assisted by dielectric heating. J. Food Eng. 92: 331–338 (2009)

    Article  Google Scholar 

  25. Moon JH, Kim MJ, Chung DH, Pan CH, Yoon WB. Drying characteristics of sea cucumber (Stichopus japonicas Selenka) using far infrared radiation drying and hot air drying. J. Food Process. Pres. 38: 1534–1546 (2014)

    Article  Google Scholar 

  26. Lahsasni S, Kouhila M, Mahrouz M, Idlimam A, Jamali A. Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficus indica). Energy 29: 211–224 (2004)

    Article  Google Scholar 

  27. Cihan A, Kahveci K, Hacihafizoglu O, de Lima AG. A diffusion based model for intermittent drying of rough rice. Heat Mass Transfer. 44: 905–911 (2008)

    Article  Google Scholar 

  28. Ortuño C, Pérez-Munuera I, Puig A, Riera E, Garcia-Perez JV. Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying. Phys. Procedia. 3: 153–159 (2010)

    Article  Google Scholar 

  29. Henríquez C, Córdova A, Almonacid S, Saavedra J. Kinetic modeling of phenolic compound degradation during drum-drying of apple peel byproducts. J. Food Eng. 143: 146–153 (2014)

    Article  Google Scholar 

  30. Garau MC, Simal S, Femenia A, Rosselló C. Drying of orange skin: Drying kinetics modelling and functional properties. J. Food Eng. 75: 288–295 (2006)

    Article  Google Scholar 

  31. Fernando WJN, Low HC, Ahmad AL. Dependence of the effective diffusion coefficient of moisture with thickness and temperature in convective drying of sliced materials. A study on slices of banana, cassava and pumpkin. J. Food Eng. 102: 310–316 (2011)

    Google Scholar 

  32. Fellows PJ. Food Processing Technology: Principles and Practice, 2nd ed. CRC Press Inc., Boca Raton, FL, USA. pp. 13–14, 99-117 (2000)

    Book  Google Scholar 

  33. Peleg M, Corradini MG, Normand MD. The logistic (Verhulst) model for sigmoid microbial growth curves revisited. Food Res. Int. 40: 808–818 (2007)

    Article  Google Scholar 

  34. Bayram M. Modelling of cooking of wheat to produce bulgur. J. Food Eng. 71: 179–186 (2005)

    Article  Google Scholar 

  35. Pinelo M, Del Fabbro P, Manzocco L, Nuñez MJ, Nicoli MC. Optimization of continuous phenol extraction from Vitis vinifera byproducts. Food Chem. 92: 109–117 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Byong Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, H., Pan, Ch. & Yoon, W.B. Mathematical models of pretreatment processes to utilize purple-fleshed potato (Solanum tuberosum L.) peels for anthocyanin extraction. Food Sci Biotechnol 25, 1361–1367 (2016). https://doi.org/10.1007/s10068-016-0213-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0213-5

Keywords

Navigation