Skip to main content
Log in

Impact of different solvents on the recovery of bioactive compounds and antioxidant properties from lemon (Citrus limon L.) pomace waste

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of different solvents on the recovery of (i) extractable solids (ES), (ii) total phenolic compounds (TPC), (iii) total flavonoid content (TFC), (iv) vitamin C, and (v) antioxidant activity from lemon pomace waste were investigated. The results revealed that solvents significantly affected the recovery of ES, TPC, TFC, and antioxidant properties. Absolute methanol and 50% acetone resulted in the highest extraction yields of TPC, whereas absolute methanol resulted in the highest extraction of TFC, and water had the highest recovery of vitamin C. 50% ethanol, and 50% acetone had higher extraction yields for TPC, and TFC, as well as higher antioxidant activity compared with their absolute solvents and water. TPC and TFC were shown to be the major components contributing to the antioxidant activity of lemon pomace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu YQ, Heying E, Tanumihardjo SA. History, global distribution, and nutritional importance of citrus fruits. Compr. Rev. Food Sci. F. 11: 530–545 (2012)

    Article  CAS  Google Scholar 

  2. Huang YS, Ho SC. Polymethoxy flavones are responsible for the antiinflammatory activity of citrus fruit peel. Food Chem. 119: 868–873 (2010)

    Article  CAS  Google Scholar 

  3. Jayaprakasha GK, Jadegoud Y, Gowda GAN, Patil BS. Bioactive compounds from sour orange inhibit colon cancer cell proliferation and induce cell cycle arrest. J. Agr. Food Chem. 58: 180–186 (2010)

    Article  CAS  Google Scholar 

  4. Yang X, Kang SM, Jeon BT, Kim YD, Ha JH, Kim YT, Jeon YJ. Isolation and identification of an antioxidant flavonoid compound from citrus-processing by-product. J. Sci. Food Agr. 91: 1925–1927 (2011)

    Article  CAS  Google Scholar 

  5. Rezzadori K, Benedetti S, Amante ER. Proposals for the residues recovery: Orange waste as raw material for new products. Food Bioprod. Process. 90: 606–614 (2012)

    Article  CAS  Google Scholar 

  6. González-Molina E, Domínguez- Perles R, Moreno DA, García-Viguera C. Natural bioactive compounds of Citrus limon for food and health. J. Pharmaceut. Biomed. 51: 327–345 (2010)

    Article  Google Scholar 

  7. Bocco A, Cuvelier ME, Richard H, Berset C. Antioxidant activity and phenolic composition of citrus peel and seed extracts. J. Agr. Food Chem. 46: 2123–2129 (1998)

    Article  CAS  Google Scholar 

  8. Dhanavade MJ, Jalkute CB, Ghosh JS, Sonawane KD. Study antimicrobial activity of lemon (Citrus lemon L.) peel extract. Brit. J. Pharmacol. Toxicol. 2: 119–122 (2011)

    Google Scholar 

  9. Proteggente AR, Pannala AS, Paganga G, Van Buren L, Wagner E, Wiseman S, Van De Put F, Dacombe C, Rice-Evans CA. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Res. 36: 217–233 (2002)

    Article  CAS  Google Scholar 

  10. Khoddami A, Wilkes MA, Roberts TH. Techniques for analysis of plant phenolic compounds. Molecules 18: 2328–2375 (2013)

    Article  CAS  Google Scholar 

  11. Abad-García B, Berrueta LA, López-Márquez DM, Crespo-Ferrer I, Gallo B, Vicente F. Optimization and validation of a methodology based on solvent extraction and liquid chromatography for the simultaneous determination of several polyphenolic families in fruit juices. J. Chromatogr. A 1154: 87–96 (2007)

    Article  Google Scholar 

  12. Vuong QV, Golding JB, Nguyen MH, Roach PD. Production of caffeinated and decaffeinated green tea catechin powders from underutilised old tea leaves. J. Food Eng. 110: 1–8 (2012)

    Article  CAS  Google Scholar 

  13. Vuong QV, Hirun S, Roach PD, Bowyer MC, Phillips PA, Scarlett CJ. Effect of extraction conditions on total phenolic compounds and antioxidant activities of carica papaya leaf aqueous extracts. J. Herb. Med. 3: 104–111 (2013)

    Article  Google Scholar 

  14. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555–559 (1999)

    Article  CAS  Google Scholar 

  15. Vuong QV, Hirun S, Chuen TLK, Goldsmith CD, Bowyer MC, Chalmers AC, Phillips PA, Scarlett CJ. Physicochemical composition, antioxidant and antiproliferative capacity of a lilly pilly (Syzygium paniculatum) extract. J. Herb. Med. 4: 134–140 (2014)

    Article  Google Scholar 

  16. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19: 669–675 (2006)

    Article  CAS  Google Scholar 

  17. Apak R, Güçlü K, Özyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agr. Food Chem. 52: 7970–7981 (2004)

    Article  CAS  Google Scholar 

  18. Wang L, Liu Y. Optimization of solvent extraction conditions for total carotenoids in rapeseed using response surface methodology. Nat. Sci. 1: 23–29 (2009)

    Google Scholar 

  19. Riitta JT. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agr. Food Chem. 33: 213–217 (1985)

    Article  Google Scholar 

  20. Yapo BM, Lerouge P, Thibault JF, Ralet MC. Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II. Carbohyd. Polym. 69: 426–435 (2007)

    Article  CAS  Google Scholar 

  21. Pinelo M, Rubilar M, Sineiro J, Núñez MJ. Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster). Food Chem. 85: 267–273 (2004)

    Article  CAS  Google Scholar 

  22. Nayak B, Dahmoune F, Moussi K, Remini H, Dairi S, Aoun O, Khodir M. Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chem. 187: 507–516 (2015)

    Article  CAS  Google Scholar 

  23. Park JH, Lee M, Park E. Antioxidant activity of orange flesh and peel extracted with various solvents. Prev. Nutr. Food Sci. 19: 291–298 (2014)

    Article  Google Scholar 

  24. Ma Y, Ye X, Hao Y, Xu G, Xu G, Liu D. Ultrasound-assisted extraction of hesperidin from Penggan (Citrus reticulata) peel. Ultrason. Sonochem. 15: 227–232 (2008)

    Article  CAS  Google Scholar 

  25. Lou SN, Hsu YS, Ho CT. Flavonoid compositions and antioxidant activity of calamondin extracts prepared using different solvents. J. Food Drug Anal. 22: 290–295 (2014)

    Article  CAS  Google Scholar 

  26. Marston A, Hostettmann K. Separation and quantification of flavonoids. pp. 1–36. In: Flavonoids: Chemistry, biochemistry and applications. Andersen ØM, Markham KR (eds). Taylor & Francis, Abingdon, UK (2005)

    Chapter  Google Scholar 

  27. Shalmashi A, Eliassi A. Solubility of l-(+)-ascorbic acid in water, ethanol, methanol, propan-2-ol, acetone, acetonitrile, ethyl acetate, and tetrahydrofuran from (293 to 323) K. J. Chem. Eng. Data 53: 1332–1334 (2008)

    Article  CAS  Google Scholar 

  28. Arnao MB. Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends Food Sci. Tech. 11: 419–421 (2000)

    Article  CAS  Google Scholar 

  29. Litwinienko G, Ingold KU. Abnormal solvent effects on hydrogen atom abstractions. 1. The reactions of phenols with 2,2-diphenyl-1-picrylhydrazyl (dpph•) in alcohols. J. Org. Chem. 68: 3433–3438 (2003)

    CAS  Google Scholar 

  30. Çelik SE, Özyürek M, Güçlü K, Apak R. Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta 81: 1300–1309 (2010)

    Article  Google Scholar 

  31. Van den Berg R, Haenen GRMM, Van den Berg H, Bast A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 66: 511–517 (1999)

    Article  Google Scholar 

  32. Shofinita D, Feng S, Langrish TAG. Comparing yields from the extraction of different citrus peels and spray drying of the extracts. Adv. Powder Technol. 26: 1633–1638 (2015)

    Article  CAS  Google Scholar 

  33. Ghasemi K, Ghasemi Y, Ebrahimzadeh MA. Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak. J. Pharm. Sci. 22: 277–281 (2009)

    CAS  Google Scholar 

  34. Al-Juhaimi FY. Citrus fruits by-products as sources of bioactive compounds with antioxidant potential. Pak. J. Bot. 46: 1459–1462 (2014)

    Google Scholar 

  35. Arena E, Fallico B, Maccarone E. Evaluation of antioxidant capacity of blood orange juices as influenced by constituents, concentration process and storage. Food Chem. 74: 423–427 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Papoutsis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papoutsis, K., Pristijono, P., Golding, J.B. et al. Impact of different solvents on the recovery of bioactive compounds and antioxidant properties from lemon (Citrus limon L.) pomace waste. Food Sci Biotechnol 25, 971–977 (2016). https://doi.org/10.1007/s10068-016-0158-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0158-8

Keywords

Navigation