Skip to main content
Log in

Cloning of the LEU2 gene from the amylolytic yeast Saccharomycopsis fibuligera

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The SfLEU2 structural gene of LEU2 encoding β-isopropylmalate dehydrogenase was cloned from the amylolytic yeast Saccharomycopsis fibuligera isolated from Nuruk, a Korean traditional starter for rice wine production. Sequence analysis revealed the presence of an uninterrupted open-reading frame of 1,107 bp, including a stop codon, encoding a 368 amino acid residue. The deduced amino acid sequence of Leu2 in S. fibuligera was 76.4% homologous with Candida boidinii and Kluyveromyces marxianus sequences. The SfLEU2 gene complemented leu2Δ mutation in Saccharomyces cerevisiae, suggesting that the gene encodes a functional LEU2 in S. fibuligera. The GenBank Accession No. for SfLEU2 is KR820563.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okamoto K, Nitta Y, Maekawa N, Yanase H. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Enzyme Microb. Tech. 48: 273–277 (2011)

    Article  CAS  Google Scholar 

  2. Rebros M, Rosenberg M, Grosova Z, Kristofikova L, Paluch M, Sipocz M. Ethanol production from starch hydrolyzates using Zymomonas mobilis and glucoamylase entrapped in polyvinylalcohol hydrogel. Appl. Biochem. Biotech. 158: 561–570 (2009)

    Article  CAS  Google Scholar 

  3. Bertoldo C, Antranikian G. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol. 6: 151–160 (2002)

    Article  CAS  Google Scholar 

  4. Viktor MJ, Rose SH, van Zyl WH, Viljoen-Bloom M. Raw starch conversion by Saccharomyces cerevisiae expressing Aspergillus tubingensis amylases. Biotechnol. Biofuels 6: 167 (2013)

    Article  Google Scholar 

  5. van Zyl WH, Bloom M, Viktor MJ. Engineering yeasts for raw starch conversion. Appl. Microbiol. Biot. 95: 1377–1388 (2012)

    Article  CAS  Google Scholar 

  6. Choi DH, Park EH, Kim MD. Characterization of starch-utilizing yeast Saccharomycopsis fibuligera isolated from Nuruk. Microbiol. Biotechnol. Lett. 42: 407–412 (2014)

    Google Scholar 

  7. He Z, Zhang L, Mao Y, Gu J, Pan Q, Zhou S, Gao B, Wei D. Cloning of a novel thermostable glucoamylase from thermophilic fungus Rhizomucor pusillus and high-level co-expression with alpha-amylase in Pichia pastoris. BMC Biotechnol. 14: 114 (2014)

    Article  Google Scholar 

  8. Kunze G, Meixner M, Steinborn G, Hecker M, Bode R, Samsonova IA, Birnbaum D, Hofemeister J. Expression in yeast of a Bacillus alpha-amylase gene by the ADH1 promoter. J. Biotechnol. 7: 33–48 (1988)

    Article  CAS  Google Scholar 

  9. Saelim K, Dissara Y, Kittikun AH. Saccharification of cassava starch by Saccharomycopsis fibuligera YCY1 isolated from Loog-Pang (rice cake starter). Songklanakarin J. Sci. Technol. 30: 65–71 (2008)

    Google Scholar 

  10. Valachova K, Horvathova V. Starch degradation by glucoamylase Glm from Saccharomycopsis fibuligera IFO 0111 in the presence and absence of a commercial pullulanase. Chem. Biodivers. 4: 874–880 (2007)

    Article  CAS  Google Scholar 

  11. Eksteen JM, Van Rensburg P, Cordero Otero RR, Pretorius IS. Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol. Bioeng. 84: 639–646 (2003)

    Article  CAS  Google Scholar 

  12. Natalia D, Vidilaseris K, Ismaya WT, Puspasari F, Prawira I, Hasan K, Fibriansah G, Permentier HP, Nurachman Z, Subroto T, Dijkstra BW, Soemitro S. Effect of introducing a disulphide bond between the A and C domains on the activity and stability of Saccharomycopsis fibuligera R64 a-amylase. J. Biotechnol. 195: 8–14 (2015)

    Article  CAS  Google Scholar 

  13. Vertes AA, Inui M, Yukawa H. Technological options for biological fuel ethanol. J. Mol. Microb. Biotech. 15: 16–30 (2008)

    Article  CAS  Google Scholar 

  14. Sambrook J, Russell DW. Molecular Cloning. Vol I, pp. 1.31–1.162. In: Molecular Cloning: A Laboratory Manual. 3rd ed. Russell DW (ed). Cold Spring Harbor Laboratory Press, New York, NY, USA (2011)

    Google Scholar 

  15. Andreadis A, Hsu YP, Hermodson M, Kohlhaw G, Schimmel P. Yeast LEU2. Repression of mRNA levels by leucine and primary structure of the gene product. J. Biol. Chem. 259: 8059–8062 (1984)

    CAS  Google Scholar 

  16. De la Rosa JM, Perez JA, Gutierrez F, Gonzalez JM, Ruiz T, Rodriguez L. Cloning and sequence analysis of the LEU2 homologue gene from Pichia anomala. Yeast 18: 1441–1448 (2001)

    Article  Google Scholar 

  17. Turakainen H, Korhola M. Cloning, sequencing and application of the LEU2 gene from the sour dough yeast Candida milleri. Yeast 22: 805–812 (2005)

    Article  CAS  Google Scholar 

  18. Marti-Renom MA, Madhusudhan MS, Sali A. Alignment of protein sequences by their profiles. Protein Sci. 13: 1071–1087 (2004)

    Article  CAS  Google Scholar 

  19. Yang Z. PAML: A program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13: 555–556 (1997)

    CAS  Google Scholar 

  20. Parsons SJ, Burns RO. ²-Isopropylmalate dehydrogenase (Salmonella typhimurium). Methods Enzymol. 17: 793–799 (1970)

    Article  Google Scholar 

  21. Boneau CA. The effects of violations of assumptions underlying the t-test. Psychol. Bull. 57: 49–64 (1960)

    Article  CAS  Google Scholar 

  22. Friden P, Schimmel P. LEU3 of Saccharomyces cerevisiae activates multiple genes for branched-chain amino acid biosynthesis by binding to a common decanucleotide core sequence. Mol. Cell. Biol. 8: 2690–2697 (1988)

    Article  CAS  Google Scholar 

  23. Wan Y, Wang X, Huang Y, Qiu D, Jiang L. Identification and characterization of cDNA sequences encoding the HIS3 and LEU2 genes of the fungus Alternaria tenuissima. J. Genet. Genomics 35: 251–256 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Dong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, EH., Yeo, SH. & Kim, MD. Cloning of the LEU2 gene from the amylolytic yeast Saccharomycopsis fibuligera . Food Sci Biotechnol 24, 2151–2154 (2015). https://doi.org/10.1007/s10068-015-0286-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0286-6

Keywords

Navigation