Skip to main content
Log in

The effect of Piper betle leaves on lacto-fermentation of idli batter, characterization and applicability of potent isolates in soymilk fermentation

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The objectives of this study were to deduce the effect of Piper betle leaves on lactofermentation of the idli batter, characterize the potent lactic acid bacteria (LAB) and elucidate their beneficial properties in soymilk fermentation. Twenty potent LAB isolates (11 bacilli and 9 cocci) showing potent antibacterial activity against food borne pathogens were obtained from the seventy isolates screened. The 20 isolates identified using 16S rRNA and Multiplex PCR, belonged to Lactobacillus plantarum subsp. argentoratensis, Lactobacillus paraplantarum, and Pediococcus pentosaceus. Among the 20 isolates, KJBC11, KJBB56, KJBB37, and KJBC67 exhibited high phytase activity in phytate hydrolysis. The isolates, KJBC67, KJBC06, and KJBB56 were used in soymilk fermentation which showed considerable reduction in the polyphenol content and trypsin inhibitory activity. The isolates KJBB37 and KJBC04 showed about 56% DPPH scavenging activity in LAB fermented soymilk compared to unfermented soymilk. Thus, this study provides the beneficial potentials of LAB isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jamuna M, Jeevaratnam K. Isolation and characterization of lactobacilli from some traditional fermented foods and evaluation of the bacteriocins. J. Gen. Appl. Microbiol. 50: 79–90 (2004)

    Article  CAS  Google Scholar 

  2. Jeevaratnam K, Jamuna M, Bawa A. Biological preservation of foods-Bacteriocins of lactic acid bacteria. Indian J. Biotechnol. 4: 446–454 (2005)

    CAS  Google Scholar 

  3. Chelule P, Mokoena M, Gqaleni N. Advantages of traditional lactic acid bacteria fermentation of food in Africa. Cur. Res. Technol. Educ. Topics Appl. Microbiol. Microb. Biotechnol. 1: 1160–1167 (2010)

    Google Scholar 

  4. Swain MR, Anandharaj M, Ray RC, Parveen Rani R. Fermented fruits and vegetables of Asia: A potential source of probiotics. Biotechnol. Res. Int. Article ID 250424 (2014)

    Google Scholar 

  5. Vidhyasagar V, Jeevaratnam K. Isolation and Characterization of Pediococcus pentosaceus from idly batter: A traditional South Indian fermented food source. Biosci. Biotechnol. Res. Asia 9: 427–431 (2012)

    Article  Google Scholar 

  6. Agaliya PJ, Jeevaratnam K. Molecular characterization of lactobacilli isolated from fermented idli batter. Braz. J. Microbiol. 44: 1199–1206 (2013)

    Article  Google Scholar 

  7. Bissa S, Songara D, Bohra A. Traditions in oral hygiene: Chewing of betel (Piper betle L.) leaves. Current Sci. 92: 6–28 (2007)

    Google Scholar 

  8. Pradhan D, Suri K, Pradhan D, Biswasroy P. Golden heart of nature: Piper betle leaf. J. Pharmacogn. Phytochem. 1: 147–167 (2013)

    Google Scholar 

  9. Greeshma AG, Srivastava B, Srivastava K. Plants used as antimicrobials in the preparation of traditional starter cultures of fermentation by certain tribes of Arunachal Pradesh. Bull. Arunachal Forest Res. 22: 52–57 (2006)

    Google Scholar 

  10. Michaylova M, Minkova S, Kimura K, Sasaki T, Isawa K. Isolation and characterization of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus from plants in Bulgaria. FEMS Microbiol. Lett. 269: 160–169 (2007)

    Article  CAS  Google Scholar 

  11. Park SY, Lee KD, An HM, Kim RJ, Kim MJ, Cha MK, Lee SW, Kim SO, Choi K, Lee K, Ha N. Producing functional soy yoghurt incubated with Bifidobacterium longum SPM1205 isolated from young adult Koreans. Biotechnol. Biotech. Eq. 26: 2759–2764 (2012)

    Article  CAS  Google Scholar 

  12. Wang YC, Yu RC, Chou C. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol. 23: 128–135 (2006)

    Article  Google Scholar 

  13. Yuan JP, Wang JH, Liu X. Metabolism of dietary soy isoflavones toequol by human intestinal micro flora-implications for health. Mol. Nutr. Food Res. 51: 765–781 (2007)

    Article  CAS  Google Scholar 

  14. Zhang X, Qi JR, Li KK, Yin SW, Wang JM, Zhu JH, XQ Y. Characterization of soybeta-conglycinin-dextran conjugate prepared by Maillard reaction in crowded liquid system. Food Res. Int. 49: 648–654 (2012)

    Article  CAS  Google Scholar 

  15. Liener IE. Possible adverse effects of soybean anticarcinogens. J. Nutr. 125: 744S–750S (1995)

    CAS  Google Scholar 

  16. Gupta YP. Anti-nutritional and toxic factors in food legumes: A review. Plant Food Hum. Nutr. 37: 201–228 (1987)

    Article  CAS  Google Scholar 

  17. Vijayendra S, Rajashree K, Halami P. Characterization of a heat stable antilisterial bacteriocin produced by vancomycin sensitive Enterococcus faecium isolated from idli batter. Indian J. Microbiol. 50: 243–246 (2010)

    Article  CAS  Google Scholar 

  18. Mundt JO. Bergey's Manual of Systematic Bacteriology. Vol. 2, pp. 1063–1071. In: Enterococci. Sneath PH, Mair NS, Sharpe EM, Holt GH (eds). Williams and Wilkins, Baltimore, MD, USA (1986)

    Google Scholar 

  19. Vijai Pal, Jamuna M, Jeevaratnam K. Isolation and characterization of bacteriocin producing lactic acid bacteria from a south Indian special dosa (Appam) batter. J. Culture Coll. 4: 53–60 (2005)

    Google Scholar 

  20. Pospiech A, Neumann B. A versatile quick-prep of genomic DNA from grampositive bacteria. Trends Genet. 11: 217–218 (1995)

    Article  CAS  Google Scholar 

  21. Bonomo M, Ricciardi A, Zotta T, Parente E, Salzao G. Molecular and technological characterization of lactic acid bacteria from traditional fermented sausages of Brasilicata region (Southern Italy). Meat Sci. 80: 1238–1248 (2008)

    Article  CAS  Google Scholar 

  22. Saraniya A, Jeevaratnam K. Molecular characterization of bacteriocinogenic Lactobacillus species isolated from fermented Uttapam batter. Biosci. Biotechnol. Res. Asia 9: 417–421 (2012)

    Article  CAS  Google Scholar 

  23. Torriani S, Felis G, Dellaglio F. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microb. 67: 3450–3454 (2001)

    Article  CAS  Google Scholar 

  24. Anastasio M, Pepe O, Cirillo T, Palomba S, Blaiotta G, Villani F. Selection and use of phytate-degrading LAB to improve cereal-based products by mineral solubilisation during dough fermentation. J. Food Sci. 75: 28–35 (2010)

    Article  Google Scholar 

  25. Subrota H, Shilpa V, Brij S, Vandna K, Surajit M. Antioxidative activity and polyphenol content in fermented soy milk supplemented with WOC-70 by probiotic lactobacilli. Int. Food Res. J. 20: 2125–2131 (2013)

    Google Scholar 

  26. Wilkens W, Mattick L, Arid Hand D. Effect of processing method on oxidative off flavors of soybean milk. Food Technol.-Chicago 21: 86–90 (1967)

    Google Scholar 

  27. Sadasivam S, Manickam A. Biochemical Methods. New Age Int. Publishers, New Age Int. (P) Ltd., New Delhi, India. pp. 215–216 (2008)

    Google Scholar 

  28. Claudia A, Graciela E, Ferraro GE, Rosana F. Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis) in Argentina. J. Agr. Food chem. 56: 9225–9229 (2008)

    Article  Google Scholar 

  29. Aijie L, Shouwei Y, Li L. Structure, trypsin inhibitor activity and functional properties of germinated soybean protein isolate. Int. J. Food Sci. Tech. 49: 911–919 (2014)

    Article  Google Scholar 

  30. Moraes P, Perin L, Ortolani M, Yamazi A, Vicosa G, Nero L. Protocols for the isolation and detection of lactic acid bacteria with bacteriocinogenic potential. LWT-Food Sci. Technol. 43: 1320–1324 (2010)

    Article  CAS  Google Scholar 

  31. Reale A, Konietzny U, Coppola R, Sorrentino E, Greiner R. The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation. J. Agr. Food Chem. 55: 2993–2997 (2007)

    Article  CAS  Google Scholar 

  32. Tang AL, Wilcox G, Walker K, Shah N, Ashton J, Stojanovska L. Phytase activity from Lactobacillus spp. in calcium-fortified soymilk. J. Food Sci. 75: 373–376 (2010)

    Article  Google Scholar 

  33. Zohreh K, Mahboobeh MN, Mohammad HN, Mahdi G, Hillary D, Anna MS. Phytase activity of lactic acid bacteria isolated from dairy and pharmaceutical probiotic products. Int. J. Enteric. Pathog. 1: 12–16 (2013)

    Article  Google Scholar 

  34. Lin MY, Yen CL. Antioxidative ability of lactic acid bacteria. J. Agr. Food Chem. 47: 1460–1466 (1999)

    Article  CAS  Google Scholar 

  35. Rekha C, Vijayalakshmi G. Biomolecules and nutritional quality of soymilk fermented with probiotic yeast and bacteria. Appl. Biochem. Biotech. 151: 452–463 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadirvelu Jeevaratnam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadishkumar, V., Kolanchiammal, R. & Jeevaratnam, K. The effect of Piper betle leaves on lacto-fermentation of idli batter, characterization and applicability of potent isolates in soymilk fermentation. Food Sci Biotechnol 24, 2137–2144 (2015). https://doi.org/10.1007/s10068-015-0284-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0284-8

Keywords

Navigation