Skip to main content
Log in

β-(1,3)-glucan isolated from Agrobacterium species induces maturation of bone marrow-derived dendritic cells and drives Th1 immune responses

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The β-(1,3)-glucan originally isolated from Agrobacterium species was investigated for prompting maturation of dendritic cells (DCs) and driving Th1 immune responses. Bone-marrow derived DCs separated from mice were analyzed for augmentation of cell surface molecule (CD80, CD86, and major histo-compatability complex (MHC) class I/II) expression and pro-inflammatory cytokine production (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6). β-Glucan functionally induced DCs activation via augmentation of CD80, CD86, and MHC class I/II expression and cytokine production (TNF-α, IL-1β, and IL-6). β-Glucan induced secretion of IL-12p70, but not IL-10. Both mitogen-activated protein kinases and nuclear factor (NF)-κB signaling mediated production of pro-inflammatory cytokine induced by β-glucan. β-Glucan-treated DCs exhibited accelerated proliferation of murine splenocytes with increased levels of interferon (IFN)-γ. β-Glucan regulates innate and adaptive immunity via DCs activation and Th1 polarization of immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borchers AT, Keen CL, Gershwin ME. Mushrooms, tumors, and immunity: An update. Exp. Biol. Med. 229: 393–406 (2004)

    CAS  Google Scholar 

  2. Falch BH, Espevik T, Ryan L, Stokke BT. The cytokine stimulating activity of (1→3)-beta-D-glucans is dependent on the triple helix conformation. Carbohyd. Res. 329: 587–596 (2000)

    Article  CAS  Google Scholar 

  3. Batbayar S, Lee DH, Kim HW. Immunomodulation of fungal β-glucan in host defense signaling by dectin-1. Biomol. Ther. 20: 433–445 (2012)

    Article  CAS  Google Scholar 

  4. Demangel C, Britton WJ. Interaction of dendritic cells with mycobacteria: Where the action starts. Immunol. Cell Biol. 78: 318–324 (2000)

    Article  CAS  Google Scholar 

  5. Gordon SB, Read RC. Macrophage defences against respiratory tract infections. Brit. Med. Bull. 61: 45–61 (2002)

    Article  CAS  Google Scholar 

  6. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9: 271–296 (1991)

    Article  CAS  Google Scholar 

  7. Reis e Sousa C. Dendritic cells as sensors of infection. Immunity 14: 495–498 (2001)

    Article  Google Scholar 

  8. Reis e Sousa C. Dendritic cells in a mature age. Nat. Rev. Immunol. 6: 476–483 (2006)

    Article  Google Scholar 

  9. Steinman RM, Inaba K. Myeloid dendritic cells. J. Leukocyte Biol. 66: 205–208 (1999)

    CAS  Google Scholar 

  10. Druszczynska M, Wlodarczyk M, Fol M, Rudnicka W. Recognition of mycobacterial antigens by phagocytes. Postepy Hig. Med. Dosw. (Online) 65: 28–39 (2011)

    Article  Google Scholar 

  11. Kim HS, Kim JY, Lee HK, Kim MS, Lee SR, Kang JS, Kim HM, Lee KA, Hong JT, Kim Y, Han SB. Dendritic cell activation by glucan isolated from Umbilicaria esculenta. Immune Netw. 10: 188–197 (2010)

    Article  Google Scholar 

  12. Ko EJ, Byon YY, Jee Y, Shin T, Park SC, Hahn TW, Joo HG. Maturation of bone marrow-derived dendritic cells by a novel β-glucan purified from Paenibacillus polymyxa JB115. J. Vet. Sci. 12: 187–189 (2011)

    Article  Google Scholar 

  13. Kim HS, Kim JY, Ryu HS, Park HG, Kim YO, Kang JS, Kim HM, Hong JT, Kim Y, Han SB. Induction of dendritic cell maturation by beta-glucan isolated from Sparassis crispa. Int. Immunopharmacol. 10: 1284–1294 (2010)

    Article  CAS  Google Scholar 

  14. Harada T, Misaki A, Saito H. Curdlan: A bacterial gel-forming beta-1,3-glucan. Arch. Biochem. Biophys. 124: 292–298 (1968)

    Article  CAS  Google Scholar 

  15. Shim JH, Sung KJ, Cho MC, Choi WA, Yang Y, Lim JS, Yoon DY. Antitumor effect of soluble beta-1,3-glucan from Agrobacterium sp. R259 KCTC 1019. J. Microbiol. Biotechn. 17: 1513–1520 (2007)

    CAS  Google Scholar 

  16. Jagodzinski PP, Wiaderkiewicz R, Kurzawski G, Kloczewiak M, Nakashima H, Hyjek E, Yamamoto N, Uryu T, Kaneko Y, Posner MR, Kozbor D. Mechanism of the inhibitory effect of curdlan sulfate on HIV-1 infection in vitro. Virology 202: 735–745 (1994)

    Article  CAS  Google Scholar 

  17. Evans SG, Morrison D, Kaneko Y, Havlik I. The effect of curdlan sulphate on development in vitro of Plasmodium falciparum. T. Roy. Soc. Trop. Med. H. 92: 87–89 (1998)

    Article  CAS  Google Scholar 

  18. Song CH, Lee JS, Lee SH, Lim K, Kim HJ, Park JK, Paik TH, Jo EK. Role of mitogen-activated protein kinase pathways in the production of tumor necrosis factor-α, interleukin-10, and monocyte chemotactic protein-1 by Mycobacterium tuberculosis H37Rvinfected human monocytes. J. Clin. Immunol. 23: 194–201 (2003)

    Article  CAS  Google Scholar 

  19. Takeuchi O, Akira S. Toll-like receptors; Their physiological role and signal transduction system. Int. Immunopharmacol. 1: 625–635 (2001)

    Article  CAS  Google Scholar 

  20. Orme IM, Andersen P, Boom WH. T cell response to Mycobacterium tuberculosis. J. Infect. Dis. 167: 1481–1497 (1993)

    Article  CAS  Google Scholar 

  21. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: An overview of signals, mechanisms and functions. J. Leukocyte. Biol. 75: 163–189 (2004)

    Article  CAS  Google Scholar 

  22. Murray PJ. Defining the requirements for immunological control of mycobacterial infections. Trends Microbiol. 7: 366–372 (1999)

    Article  CAS  Google Scholar 

  23. Xiao Z, Trincado CA, Murtaugh MP. Beta-glucan enhancement of T cell IFNγ response in swine. Vet. Immunol. Immunop. 102: 315–320 (2004)

    Article  CAS  Google Scholar 

  24. Sonck E, Devriendt B, Goddeeris B, Cox E. Varying effects of different β-glucans on the maturation of porcine monocyte-derived dendritic cells. Clin. Vaccine Immunol. 18: 1441–1446 (2011)

    Article  CAS  Google Scholar 

  25. Grohmann U, Belladonna ML, Bianchi R, Orabona C, Ayroldi E, Fioretti MC, Puccetti P. IL-12 acts directly on DC to promote nuclear localization of NF-κB and primes DC for IL-12 production. Immunity 9: 315–323 (1998)

    Article  CAS  Google Scholar 

  26. Trinchieri G, Pflanz S, Kastelein RA. The IL-12 family of heterodimeric cytokines: New players in the regulation of T cell responses. Immunity 19: 641–644 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eui-Hong Byun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, EB., Sung, NY., Park, SH. et al. β-(1,3)-glucan isolated from Agrobacterium species induces maturation of bone marrow-derived dendritic cells and drives Th1 immune responses. Food Sci Biotechnol 24, 1533–1540 (2015). https://doi.org/10.1007/s10068-015-0197-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0197-6

Keywords

Navigation