Skip to main content
Log in

Simple synthesis of isomaltooligosaccharides during Sauerkraut fermentation by addition of Leuconostoc starter and sugars

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Isomaltooligosaccharides (IMOs), prebiotic compounds stimulating the growth of intestinal bacteria, were synthesized in sauerkraut by inoculating psychrotrophic Leuconostoc citreum KACC 91035 strain with high dextransucrase activity. For the glucose transferring reaction of dextransucrase, sucrose and maltose were added in sauerkraut (29 and 28 mM, respectively, w/v) as glucosyl donor and acceptor molecule, respectively. For 12 days of fermentation at 10℃, IMOs were gradually produced by consuming sucrose and maltose, and the synthesis rate and maximal concentration of IMOs were 2.04 and 20.2 mM, respectively. This result demonstrates a simple method to manufacture a synbiotic sauerkraut product by adding probiotic lactic acid bacterium and sugars as ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swain MR, Anandharaj M, Ray RC, Praveen-Rani R. Fermented fruits and vegetables of Asia: A potential source of probiotics. Biotechnol. Res. Int. 2014: 250424 (2014)

    Article  Google Scholar 

  2. Plengvidhya V, Breidt Jr F, Fleming H. Use of RAPD-PCR as a method to follow the progress of starter cultures in sauerkraut fermentation. Int. J. Food Microbiol. 93: 287–296 (2004)

    Article  CAS  Google Scholar 

  3. Eom HJ, Park JM, Seo MJ, Kim MD, Han NS. Monitoring of Leuconostoc mesenteroides DRC starter in fermented vegetable by random integration of chloramphenicol acetyltransferase gene. J. Ind. Microbiol. Biot. 35: 953–959 (2008)

    Article  CAS  Google Scholar 

  4. Chyun JH, Rhee HS. Studies on the volatile fatty acids and carbon dioxide produced in different kimchis. Korean J. Food Sci. Technol. 8: 90–94 (1976)

    CAS  Google Scholar 

  5. Robyt JF, Eklund SH. Relative, quantitative effects of acceptors in the reaction of Leuconostoc mesenteroides B-512F dextransucrase. Carbohyd. Res. 121: 279–286 (1983)

    Article  CAS  Google Scholar 

  6. Crittenden RG, Playne MJ. Production, properties and applications of food-grade oligosaccharides. Trends Food Sci. Tech. 7: 353–361 (1996)

    Article  CAS  Google Scholar 

  7. Kohmoto T, Fukui F, Takaku H, Machida Y, Arai M, Mitsuoka T. Effect of isomalto-oligosaccharides on human fecal flora. Bifidobact. Microflora 7: 61–69 (1988)

    Article  Google Scholar 

  8. Kohmoto T, Fukui F, Takaku H, Mitsuoka T. Dose-response test of isomaltooligosaccharides for increasing fecal bifidobacteria. Agr. Biol. Chem. Tokyo 55: 2157–2159 (1991)

    Article  CAS  Google Scholar 

  9. Kaneko T, Kohmoto T, Kikuchi H, Shiota M, Iino T, Mitsuoka T. Effects of isomaltooligosaccharides with different degrees of polymerization on human fecal bifidobacteria. Biosci. Biotech. Bioch. 58: 2288–2290 (1994)

    Article  CAS  Google Scholar 

  10. Han NS, Jung Y-S, Eom H-J, Koh Y-H, Robyt JF, Seo J-H. Simultaneous biocatalytic synthesis of panose during lactate fermentation in kimchi. J. Microbiol. Biotechn. 12: 46–52 (2002)

    Google Scholar 

  11. Eom HJ, Seo DM, Han NS. Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables. Int. J. Food Microbiol. 117: 61–67 (2007)

    Article  CAS  Google Scholar 

  12. Cho SK, Eom H-J, Moon JS, Lim S-B, Kim YK, Lee KW, Han NS. An improved process of isomaltooligosaccharide production in kimchi involving the addition of a Leuconostoc starter and sugars. Int. J. Food Microbiol. 170: 61–64 (2014)

    Article  CAS  Google Scholar 

  13. Beganoviæ J, Pavunc AL, Gjuraèiæ K, Špoljarec M, Šuškoviæ J, Kos B. Improved sauerkraut production with probiotic strain Lactobacillus plantarum L4 and Leuconostoc mesenteroides LMG 7954. J. Food Sci. 76: 124–129 (2011)

    Article  Google Scholar 

  14. Viander B, Mäki M, Palva A. Impact of low salt concentration, salt quality on natural large-scale sauerkraut fermentation. Food Microbiol. 20: 391–395 (2003)

    Article  CAS  Google Scholar 

  15. Plengvidhya V, Breidt Jr F, Lu Z, Fleming HP. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Appl. Environ. Microb. 73: 7697–7702 (2007)

    Article  CAS  Google Scholar 

  16. Wang C, Zhang X, Li D, Niu C, Yang Z. Study on the identification and resistant properties of Lactobacillus plantarum isolated from sauerkraut. Food Sci. Technol. 31: 141–144 (2010)

    CAS  Google Scholar 

  17. Yang Z, Li S, Zhang X, Zeng X, Li D, Zhao Y, Zhang J. Capsular and slime-polysaccharide production by Lactobacillus rhamnosus JAAS8 isolated from Chinese sauerkraut: Potential application in fermented milk products. J. Biosci. Bioeng. 110: 53–57 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Soo Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S.K., Shin, SY., Lee, S.J. et al. Simple synthesis of isomaltooligosaccharides during Sauerkraut fermentation by addition of Leuconostoc starter and sugars. Food Sci Biotechnol 24, 1443–1446 (2015). https://doi.org/10.1007/s10068-015-0185-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0185-x

Keywords

Navigation