Skip to main content
Log in

Anti-adipogenic activity of blue mussel (Mytilus edulis) extract by regulation of 3T3-L1 adipogenesis through Wnt/β-catenin signaling pathway

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The blue mussel (Mytilus edulis) is widely distributed in European waters but it is little consumed. Although several studies have been reported biological activities of mussels, the anti-adipogenic activity of blue mussel and the molecular mechanism in anti-obese activity remain unknown. Here, we prepared a water extract of blue mussel (BME) and its anti-adipogenic activity was assessed in 3T3-L1 cells. BME treatment dose-dependently inhibited 3T3-L1 lipid accumulation, as judged by Oil Red O staining and microscopic analysis. Consistent with this, BME treatment markedly suppressed mRNA expression levels of adipogenic genes, such as C/EBPβ, PPARγ, C/EBPα, and FAS, in 3T3-L1 mature adipocytes. BME-inhibited lipid accumulation in 3T3-L1 adipocytes was limited with treatment after adipocyte differentiation, particularly in the early and intermediate stages. We also showed that the Wnt/β-catenin signaling pathway is required in BME-inhibited 3T3-L1 adipogenesis. These finding may provide scientific evidence for the development of functional foods against obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ntambi JM, Kim YC. Adipocyte differentiation and gene expression. J. Nutr. 130: 3122S–3126S (2000)

    CAS  Google Scholar 

  2. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol. Rev. 78: 783–809 (1998)

    CAS  Google Scholar 

  3. Zhang XH, Huag B, Choi SK, Seo JS. Anti-obesity effect of resveratrol-amplified grape skin extracts on 3T3-L1 adipocytes differentiation. Nutr. Res. Pract. 6: 286–293 (2012)

    Article  CAS  Google Scholar 

  4. Park MY, Seo DW, Lee JY, Sung MK, Lee YM, Jang HH, Choi HY, Kim JH, Park DS. Effects of Panicum miliaceum L. extract on adipogenic transcription factors and fatty acid accumulation in 3T3-L1 adipocytes. Nutr. Res. Pract. 5: 192–197 (2011)

    Article  Google Scholar 

  5. Takahashi M, Takahashi Y, Takahashi K, Zolotaryov FN, Hong KS, Kitazawa R, Iida K, Okimura Y, Kaji H, Kitazawa S, Kasuga M, Chihara K. Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett. 582: 573–578 (2008)

    Article  CAS  Google Scholar 

  6. Song Y, Park HJ, Kang SN, Jang SH, Lee SJ, Ko YG, Kim GS, Cho JH. Blueberry peel extracts inhibit adipogenesis in 3T3-L1 cells and reduce high-fat diet-induced obesity. PLoS ONE 8: e69925 (2013)

    Article  Google Scholar 

  7. Zang K, Wang J, Dong M, Sun R, Wang Y, Huang Y, Liu X, Li Y, Wang F, Yu M. Brd2 inhibits adipogenesis via the ERK1/2 signaling pathway in 3T3-L1 adipocytes. PLoS ONE 8: e78536 (2013)

    Article  Google Scholar 

  8. Siersbæk, Mandrup S. Transcriptional networks controlling adipocyte differentiation. Cold Spring Harb. Sym. 76: 247–255 (2011)

    Article  Google Scholar 

  9. White UA, Stephens JM. Transcriptional factors that promote formation of white adipose tissue. Mol. Cell. Endocrinol. 318: 10–14 (2010)

    Article  CAS  Google Scholar 

  10. Prestwich TC, MacDougald OA. Wnt/β-catenin signaling in adipogenesis and metabolism. Curr. Opin. Cell Biol. 19: 612–617 (2007)

    Article  CAS  Google Scholar 

  11. Samad F, Yamamoto K, Pandey M, Loskutoff DJ. Elevated expression of transforming growth factor-β in adipose tissue from obese mice. Mol. Med. 3: 37–48 (1997)

    CAS  Google Scholar 

  12. Kim CY, Kim GN, Wiacek JL, Chen CY, Kim KH. Selenate inhibits adipogenesis through induction of transforming growth factor-β1 (TGF-β1) signaling. Biochem. Bioph. Res. Co. 426: 551–557 (2012)

    Article  CAS  Google Scholar 

  13. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA. Inhibition of adipogenesis by Wnt signaling. Science 289: 950–953 (2000)

    Article  CAS  Google Scholar 

  14. Wi HR, Choi MJ, Choi SC, Kim AJ, Lee MS. Effects of vitexin from mung bean on 3T3-L1 adipocyte differentiation and regulation according to adipocytokine secretion. J. Korean Soc. Food Sci. Nutr. 41: 1079–1085 (2012)

    Article  CAS  Google Scholar 

  15. Shen Y, Song SJ, Keum NR, Park TS. Olive leaf extract attenuates obesity in high-fat diet-fed mice by modulating the expression of molecules involved in adipogenesis and thermogenesis. Evid.-Based Compl. Alt. 2014: 971890 (2014)

    Google Scholar 

  16. Park JA, Jin KS, Oh YN, Hyun SK, Choi YH, Kwon HJ, Kim BW. Antiadipogenic effect of Vitis amurensis root methanol extract and its solvent fractions in 3T3-L1 preadipocytes. J. Life Sci. 23: 69–78 (2013)

    Article  Google Scholar 

  17. Park YS, Yoon YS, Ahn HS. Platycodon grandiflorum extract represses up-regulated adipocyte fatty acid binding protein triggered by a high fat feeding in obese rats. World J. Gastroentero. 13: 3493–3499 (2007)

    Article  CAS  Google Scholar 

  18. Kim IH, Kim JW, Lee JH. Purification of a antimicrobial peptide from the marine mussel, Mytilus coruscus. Environ. Mutagen. Carcin. 26: 25–29 (2006)

    CAS  Google Scholar 

  19. Charlet M, Chernysh S, Philippe H, Hetru C, Hoffmann JA, Bulet P. Innate immunity Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusk, Mytilus edulis. J. Biol. Chem. 271: 21808–21813 (1996)

    Article  CAS  Google Scholar 

  20. Murphy KJ, Mooney BD, Mann NJ, Nichols PD, Sinclair AJ. Lipid, FA, and sterol composition of New Zealand green lipped mussel (Perna canaliculus) and tasmanian blue mussel (Mytilus edulis). Lipids 37: 587–595 (2002)

    Article  CAS  Google Scholar 

  21. McPhee S, Hodges LD, Wright PA, Wynnec PM, Kalafatis N, Macrides TA. Prophylactic and therapeutic effects of Mytilus edulis fatty acids on adjuvant-induced arthritis in male Wistar rats. Prostag. Leukotr. Ess. 82: 97–103 (2010)

    Article  CAS  Google Scholar 

  22. Rajapakse N, Mendis E, Jung WK, Je JY, Kim SK. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res. Int. 38: 175–182 (2005)

    Article  CAS  Google Scholar 

  23. Kim CY, Le TT, Chen C, Chen JX, Kim KH. Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion. J. Nutr. Biochem. 22: 910–920 (2011)

    Article  CAS  Google Scholar 

  24. Park HJ, Chung BY, Lee MK, Song YN, Lee SS, Chu GM, Kang SN, Song YM, Kim GS, Cho JH. Centipede grass exerts anti-adipogenic activity through inhibition of C/EBPβ, C/EBPα, and PPARγ expression and the AKT signaling pathway in 3T3-L1 adipocytes. Evid.-Based Compl. Alt. 12: 230 (2012)

    CAS  Google Scholar 

  25. Kim MJ, Kim HK. Perilla leaf extract inhibits 3T3-L1 preadipocytes differentiation. Food Sci. Biotechnol. 18: 928–931 (2009)

    Google Scholar 

  26. Barker C. Jorgensen Patterns of uptake of dissolved amino acid in mussels (Mytilus edulis). Mar. Biol. 73: 177–182 (1983)

    Article  Google Scholar 

  27. Whitehouse MW, Macrides TA, Kalafatis N, Betts WH, Haynes DR, Broadbent J. Anti-inflammatory activity of a lipid fraction (lyprinol) from the NZ green-lipped mussel. Inflammopharmacology 5: 237–246 (1997)

    Article  CAS  Google Scholar 

  28. Moncheva S, Trakhtenberg S, Katrich E, Zemser M, Goshev I, Toledo F, Arancibia-Avila P, Doncheva V, Gorinstein S. Total antioxidant capacity in the black mussel (Mytilus galloprovincialis) from black sea coasts. Estuar. Coast. Shelf. S 59: 475–484 (2004)

    Article  CAS  Google Scholar 

  29. Shon MS, Kim SK, Lee SC, Kim GN. Anti-obese activity of water extract prepared from green-shelled mussel through regulating adipogenesis. Korean J. Aesthet. Cosmetol. 11: 1067–1072 (2013)

    Google Scholar 

  30. Ramirez-Zacarias JL, Castro-Muiiozledo F, Kuri-Harcuch W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 97: 493–497 (1992)

    Article  CAS  Google Scholar 

  31. Ali AT, Hochfeld WE, Myburgh R, Pepper MS. Adipocyte and adipogenesis. Eur. J. Cell Biol. 92: 229–236 (2013)

    Article  CAS  Google Scholar 

  32. Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, Bapat P, Kwun IS, Shen CL. Novel insights of dietary polyphenols and obesity. J. Nutr. Biochem. 25: 1–18 (2014)

    Article  Google Scholar 

  33. Chan CY, Wei L, Castro-Munozledo F, Koo WL. (-)-Epigallocatechin-3-gallate blocks 3T3-L1 adipose conversion by inhibition of cell proliferation and suppression of adipose phenotype expression. Life Sci. 89: 779–85 (2011)

    Article  CAS  Google Scholar 

  34. Furuyashiki T, Nagayasu H, Aoki Y, Bessho H, Hashimoto T, Kanazawa K. Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/EBPalpha in 3T3-L1 cells. Biosci. Biotech. Bioch. 68: 2353–2359 (2004)

    Article  CAS  Google Scholar 

  35. Chen N, Bezzina R, Hinch E, Lewandowski PA, Cameron-Smith D, Mathai ML, Jois M, Sinclair AJ, Begg DP, Wark JD, Weisinger HS, Weisinger RS. Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet. Nutr. Res. 29: 784–93 (2009)

    Article  CAS  Google Scholar 

  36. Kang NE, Ha AW, Kim JY, Kim WK. Resveratrol inhibits the protein expression of transcription factors related adipocyte differentiation and the activity of matrix metalloproteinase in mouse fibroblast 3T3-L1 preadipocytes. Nutr. Res. Pract. 6: 499–504 (2012)

    Article  CAS  Google Scholar 

  37. Li HX, Xiao Lei, Wang C, Gao JL, Zhai YG. Epigenetic regulation of adipocyte differentiation and adipogenesis. J. Zhejiang Univ.-Sc. B. 11: 784–791 (2010)

    Article  Google Scholar 

  38. Kim MB, Song YW, Kim CH, Hwang JK. Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes. Biochem. Bioph. Res. Co. 445: 433–438 (2014)

    Article  CAS  Google Scholar 

  39. Harp JB. New insights into inhibitors of adipogenesis. Curr. Opin. Lipidol. 15: 303–307 (2004)

    Article  CAS  Google Scholar 

  40. Choi OM, Cho YH, Choi S, Lee SH, Seo SH, Kim HY, Han G, Min DS, Park T, Choi KY. The small molecule indirubin-3’oxime activates Wnt/β-catenin signaling and inhibits adipocyte differentiation and obesity. Int. J. Obesity 38: 1044–1052 (2014)

    Article  CAS  Google Scholar 

  41. Zhu W, Mantione K, Jones D, Salamon E, Cho JJ, Cadet P, Stefano GB. The presence of 17-β estradiol in Mytilus edulis gonadal tissues: Evidence for estradiol isoforms. Neuroendocrinol. Lett. 24: 137–140 (2003)

    CAS  Google Scholar 

  42. Awapara J, Allen K. Occurrence of β-aminoisobutyric acid in Mytilus edulis. Science 130: 1250 (1959)

    Article  CAS  Google Scholar 

  43. Begriche K, Massart J, Fromenty B. Effects of β-aminoisobutyric acid on leptin production and lipid homeostasis: Mechanisms and possible relevance for the preventin of obesity. Fundam. Clin. Parm. 24: 269–282 (2010)

    Article  CAS  Google Scholar 

  44. Jeong SH, Yoon MC. 17β-Estradiol inhibition of PPARγ-induced adipogenesis and adipocyte-specific gene expression. Acta Pharmacol. Sin. 32: 230–238 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyo-Nam Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shon, MS., Kim, SK., Song, JH. et al. Anti-adipogenic activity of blue mussel (Mytilus edulis) extract by regulation of 3T3-L1 adipogenesis through Wnt/β-catenin signaling pathway. Food Sci Biotechnol 24, 315–321 (2015). https://doi.org/10.1007/s10068-015-0042-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0042-y

Keywords

Navigation