Skip to main content
Log in

Development of a genus-specific PCR combined with ARDRA for the identification of Leuconostoc species in kimchi

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

With Leuconostoc species being increasingly isolated from many fermented kimchi, a systematic identification of this genus is required, for which an amplified ribosomal DNA restriction analysis (ARDRA) has been developed. This method applies both polymerase chain reaction and restriction pattern analysis using a restriction enzyme. First, using specific primers that were designed from lactic acid bacteria (LAB) sequences, 217 bp specific to LAB was produced. Then, restriction analysis using the MspI was applied to identify these bacteria at the species level. This study demonstrates novel ARDRA technique for the identification of Leuconostoc species was successful in identifying according to the genomic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mheen TI, Kwon TW. Effect of temperature and salt concentration on kimchi fermentation. Kor. J. Food Sci. Technol. 16: 443–450 (1984)

    CAS  Google Scholar 

  2. Park HJ, Park YH, Kim YB. Characterization of growth and ethanol formation of Weisella paramesenteroides. Food Sci. Biotechnol. 10: 72–75 (2001)

    Google Scholar 

  3. Patel JB. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol. Diagn. 6: 313–321 (2001)

    Article  CAS  Google Scholar 

  4. Kolbert CP, Persing DH. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr. Opin. Microbiol. 2: 299–305 (1999)

    Article  CAS  Google Scholar 

  5. Lee JS, Chun CO, Kim HJ, Joo YJ, Lee HJ, Park CS, Ahn JS, Park YH, Mheen TI. Analysis of cellular fatty acid methyl esters (FAMEs) for the identification of Leuconostoc strains isolated from kimchi. J. Microbiol. 34: 225–228 (1996)

    CAS  Google Scholar 

  6. Lee JS, Chun CO, Jung MC, Kim WS, Kim HJ, Hector M, Kim SB, Ahn JS, Park YH, Mheen TI. Classification of isolates originating from kimchi using carbon-source utilization patterns. J. Appl. Microbiol. Biotechnol. 7: 68–74 (1997)

    CAS  Google Scholar 

  7. Kim JH, Chun JS, Han HU. Leuconostoc kimchii sp. nov., a new species from kimchi. Int. J. Syst. Evol. Microbiol. 5: 1915–1919 (2000)

    Google Scholar 

  8. Kim BJ, Lee JH, Jang JC, Kim JH, Han HU. Leuconostoc inhae sp. nov., a lactic acid bacterium isolated from kimchi. Int. J. Syst. Evol. Microbiol. 4: 1123–1126 (2003)

    Article  Google Scholar 

  9. Lee JS, Lee KC, Ahn JS, Mheen TI, Pyun YR, Park YH. Weissella koreensis sp. nov., isolated from kimchi. Int. J. Syst. Evol. Microbiol. 4: 1257–1267 (2002)

    Article  Google Scholar 

  10. Osterhout GJ, Valentine JL, Dick JD. Phenotypic and genotypis characterization of clinical strains of CDC group IVc-2. J. Clin. Microbiol. 36: 2618–2622 (1998)

    CAS  Google Scholar 

  11. Tang Y, Ellis NM, Hopkins MK, Smith DH, Dodge DE, Persing DH. Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic gram-negative bacilli. J. Clin. Microbiol. 36: 3674–3679 (1998)

    CAS  Google Scholar 

  12. Wang X, Heazlewood SP, Krause DO, Florin THJ. Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J. Appl. Microbiol. 95: 508–520 (2003)

    Article  CAS  Google Scholar 

  13. Recep C, Elodie L, Patrick T. Molecular diversity of Leuconostoc mesenteroides and Leuconostoc citreum isolated from traditional French cheeses as revealed by RAPD fingerprinting, 16S rDNA sequencing, and 16S rDNA fragment amplification. System. Appl. Microbiol. 23: 267–278 (2001)

    Google Scholar 

  14. Nwankwo DO, Wilson GG. Cloning and expression of the MspI restriction and modification genes. Gene 64: 1–8 (1988)

    Article  CAS  Google Scholar 

  15. Lin PM, Lee CH, Roberts RJ. Cloning and characterization of the genes encoding the MspI restriction modification system. Nucleic Acids Res. 17: 3001–3011 (1989)

    Article  CAS  Google Scholar 

  16. Xu QS, Roberts RJ, Guo HC. Two crystal forms of the restriction enzyme MspI-DNA complex show the same novel structure. Protein Sci. 14: 2590–2600 (2005)

    Article  CAS  Google Scholar 

  17. Salzano G, Moschetti G, Villani GF, Pepe O, Mauriello G, Coppola S. Genotyping of Streptococcus thermophilus evidenced by restriction analysis of ribosomal DNA. Res. Microbiol. 145: 651–658 (1994)

    Article  CAS  Google Scholar 

  18. Giraffa G, de Vecchi P, Rossetti L. Identification of Lactobacillus delbrueckii subspecies lactis dairy isolates by amplified rDNA restriction analysis. J. Appl. Microbiol. 85: 918–924 (1998)

    Article  CAS  Google Scholar 

  19. Choi MH, Park YH. Selective control of lactobacilli in kimchi with nisin. Lett. Appl. Microbiol. 30: 173–177 (2000)

    Article  CAS  Google Scholar 

  20. Faisal T, Siraj P, Anees R, Jaleel K, Shahanas C, Mahendra P, Sehamuddin G. Caspase-3 mediated release of SAC domain containing fragment from Par-4 is necessary for the sphingosineinduced apoptosis in Jurkat cells. J. Mol. Signal. 8: 2, DOI: 10.1186/1750-2187-8-2 (2013)

    Article  Google Scholar 

  21. Kralj S, van Geel-Schutten GH, Rahaoui H, Leer RJ, Faber EJ, van der Maarel MJ, Dijkhuizen L. Molecular characterization of a novel glucosyl transferase from Lactobacillus reuteri strain 121 synthesizing a unique, highly branched glucan with α-(14) and α-(16) glucosidic bonds. Appl. Environ. Microbiol. 68: 4283–4291 (2002)

    Article  CAS  Google Scholar 

  22. Burger JH, Dick LMT. Technique for isolating plasmids from exopolysaccharide producing Lactobacillus spp. Biotechnol. Tech. 8: 769–772 (1994)

    Article  CAS  Google Scholar 

  23. Thompson JD, Higgins DG, Gibspm TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence aligment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680 (1994)

    Article  CAS  Google Scholar 

  24. Chun JS, Goodfellow MA. Phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45: 240–245 (1995)

    Article  CAS  Google Scholar 

  25. Chenoll E, Macián MC, Aznar R. Identification of Carnobacterium, Lactobacillus, Leuconostoc, and Pediococcus by rDNA-based techniques. Syst. Appl. Microbiol. 26: 546–556 (2003)

    Article  CAS  Google Scholar 

  26. Park JM, Shin JH, Lee DW, Song JC, Suh HJ, Chang UJ, Kim JM. Identification of the lactic acid bacteria in kimchi according to initial and over-ripened fermentation using PCR and 16S rRNA gene sequence analysis. Food Sci. Biotechnol. 19: 541–546 (2010)

    Article  CAS  Google Scholar 

  27. Lim CR, Park HK, Han HU. Reevaluation of isolation and identification of Gram-positive bacteria in kimchi. Korean J. Microbiol. 27: 404–414 (1989)

    Google Scholar 

  28. Shin DH, Kim MS, Han JS, Lim DK, Bak WS. Changes of chemical composition and microflora in commercial kimchi. Korean J. Food Sci. Technol. 28: 137–145 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Man Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JM., Yang, CY., Park, H. et al. Development of a genus-specific PCR combined with ARDRA for the identification of Leuconostoc species in kimchi. Food Sci Biotechnol 23, 511–516 (2014). https://doi.org/10.1007/s10068-014-0070-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0070-z

Keywords

Navigation