Skip to main content

Advertisement

Log in

Overexpression of Synoviolin and miR-125a-5p, miR-19b-3p in peripheral blood of rheumatoid arthritis patients after treatment with conventional DMARDs and methylprednisolone

  • ORIGINAL ARTICLE
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Purpose

SYVN1 is an endoplasmic reticulum (ER)-resident E3 ubiquitin ligase that has an essential function along with SEL1L in rheumatoid arthritis (RA) pathogenesis. This study aimed to investigate the changes in the expression of peripheral blood ncRNAs and SYVN1-SEL1L affected by DMARDs treatment.

Methods

Twenty-five newly diagnosed RA patients were randomly assigned to receive conventional DMARDs (csDMARDs) and methylprednisolone for six months. The peripheral blood gene expression of SYVN1 and SEL1L and possible regulatory axes, NEAT1, miR-125a-5p, and miR-19b-3p, were evaluated before and after qRT-PCR. We also compared differences between the patients and healthy controls (HCs), and statistical analyses were performed to determine the correlation between ncRNAs with SYVN1-SEL1L and the clinical parameters of RA.

Results

Expression of NEAT1 (P = 0.0001), miR-19b-3p (P = 0.007), miR-125a-5p (P = 0.005), and SYVN1 (P = 0.036) was significantly increased in newly diagnosed patients compared to HCs; also, miR-125a-5p, miR-19b-3p, and SYVN1 were significantly overexpressed after treatment (P = 0.001, P = 0.001, and P = 0.005, respectively). NEAT1 was positively correlated with SYVN1, and miR-125a-5p had a negative correlation with anti-cyclic citrullinated peptides. The ROC curve analysis showed the potential role of selected ncRNAs in RA pathogenesis.

Conclusion

The results indicate the ineffectiveness of the csDMARDs in reducing SYVN1 expression. The difference in expression of ncRNAs might be useful markers for monitoring disease activity and determining therapeutic responses in RA patients.

Key Points

• The expression of NEAT1 is significantly upregulated in RA patients compared to HC subjects.

• miR-19b-3p, miR-125a-5p, and SYVN1 are significantly upregulated in RA patients compared to HC subjects.

• The expression of miR-19b-3p and miR-125a-5p is significantly increased in RA patients after treatment with DMARDs and methylprednisolone.

• NEAT1 is positively correlated with SYVN1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ACR:

American College Of Rheumatology

AICD:

Activation-Induced Cell Death

AUC:

Area Under The Curve

DMARDs:

Disease-Modifying Antirheumatic Drugs

EDTA:

Ethylenediaminetetraacetic Acid

ERAD:

ER-Associated Degradation

ESR:

Erythrocyte Sedimentation Rate

EULAR:

European League Against Rheumatism

HCQ:

Hydroxychloroquine

LncRNA:

Long Non-Coding RNA

miRNA:

MicroRNA

mPRED:

Methylprednisolone

MTX:

Methotrexate

ncRNA:

Non-Coding RNA

NEAT1:

Nuclear Paraspeckle Assembly Transcript 1

ROC:

Receiver Operating Characteristic

SYVN1:

Synoviolin1

UPR:

Unfolded Protein Response

WBC:

White Blood Cells

References

  1. Anca C, Akilan K, Bence R (2021) Current view on the pathogenic role of anti-citrullinated protein antibodies in rheumatoid arthritis. RMD Open 7:e001228

    Google Scholar 

  2. Pitzalis C, Kelly S, Humby F (2013) New learnings on the pathophysiology of RA from synovial biopsies. Curr Opin Rheumatol 25:334–344

    PubMed  Google Scholar 

  3. Mahmoudi Z, Karamali N, Roghani SA, Assar S, Pournazari M, Soufivand P, Salari F, Rezaiemanesh A (2022) Efficacy of DMARDs and methylprednisolone treatment on the gene expression levels of HSPA5, MMD, and non-coding RNAs MALAT1, H19, miR-199a-5p, and miR-1-3p, in patients with rheumatoid arthritis. Int Immunol 108:108878

  4. Smolen JS, Landewé R, Bijlsma J, Burmester G, Chatzidionysiou K, Dougados M, Nam J, Ramiro S, Voshaar M, van Vollenhoven R, Aletaha D, Aringer M, Boers M, Buckley CD, Buttgereit F, Bykerk V, Cardiel M, Combe B, Cutolo M, van Eijk-Hustings Y, Emery P, Finckh A, Gabay C, Gomez-Reino J, Gossec L, Gottenberg JE, Hazes JMW, Huizinga T, Jani M, Karateev D, Kouloumas M, Kvien T, Li Z, Mariette X, McInnes I, Mysler E, Nash P, Pavelka K, Poór G, Richez C, van Riel P, Rubbert-Roth A, Saag K, da Silva J, Stamm T, Takeuchi T, Westhovens R, de Wit M, van der Heijde D (2017) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis 76:960–977

    PubMed  Google Scholar 

  5. Smolen JS, Landewé RBM, Bijlsma JWJ, Burmester GR, Dougados M, Kerschbaumer A, McInnes IB, Sepriano A, van Vollenhoven RF, de Wit M, Aletaha D, Aringer M, Askling J, Balsa A, Boers M, den Broeder AA, Buch MH, Buttgereit F, Caporali R, Cardiel MH, De Cock D, Codreanu C, Cutolo M, Edwards CJ, van Eijk-Hustings Y, Emery P, Finckh A, Gossec L, Gottenberg JE, Hetland ML, Huizinga TWJ, Koloumas M, Li Z, Mariette X, Müller-Ladner U, Mysler EF, da Silva JAP, Poór G, Pope JE, Rubbert-Roth A, Ruyssen-Witrand A, Saag KG, Strangfeld A, Takeuchi T, Voshaar M, Westhovens R, van der Heijde D (2020) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis 79:685–699

    PubMed  CAS  Google Scholar 

  6. Cronstein BN, Aune TM (2020) Methotrexate and its mechanisms of action in inflammatory arthritis. Nat Rev Rheumatol 16:145–154

    PubMed  CAS  Google Scholar 

  7. Schrezenmeier E, Dörner T (2020) Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 16:155–166

    PubMed  CAS  Google Scholar 

  8. Benjamin O, Goyal A, Lappin SL (2023) Disease modifying anti-rheumatic drugs (DMARD). StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  9. Tanaka Y (2020) Rheumatoid arthritis. Inflamm Regener 40:20

    CAS  Google Scholar 

  10. Sun S, Shi G, Sha H, Ji Y, Han X, Shu X, Ma H, Inoue T, Gao B, Kim H, Bu P, Guber RD, Shen X, Lee AH, Iwawaki T, Paton AW, Paton JC, Fang D, Tsai B, Yates JR 3rd, Wu H, Kersten S, Long Q, Duhamel GE, Simpson KW, Qi L (2015) IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation. Nat Cell Biol 17:1546–1555

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Omura T, Matsuda H, Nomura L, Imai S, Denda M, Nakagawa S, Yonezawa A, Nakagawa T, Yano I, Matsubara K (2018) Ubiquitin ligase HMG-CoA reductase degradation 1 (HRD1) prevents cell death in a cellular model of Parkinson’s disease. Biochem Biophys Res Commun 506:516–521

    PubMed  CAS  Google Scholar 

  12. Shrestha N, Liu T, Ji Y, Reinert RB, Torres M, Li X, Zhang M, Tang CA, Hu CA, Liu C, Naji A, Liu M, Lin JD, Kersten S, Arvan P, Qi L (2020) Sel1L-Hrd1 ER-associated degradation maintains β cell identity via TGF-β signaling. J Clin Investig 130:3499–3510

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Brewer JW, Diehl JA (2000) PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci USA 97:12625–12630

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    PubMed  CAS  Google Scholar 

  15. Yamasaki S, Yagishita N, Tsuchimochi K, Nishioka K, Nakajima T (2005) Rheumatoid arthritis as a hyper-endoplasmic-reticulum-associated degradation disease. Arthritis Res Ther 7:181–186

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Yamasaki S, Yagishita N, Sasaki T, Nakazawa M, Kato Y, Yamadera T, Bae E, Toriyama S, Ikeda R, Zhang L, Fujitani K, Yoo E, Tsuchimochi K, Ohta T, Araya N, Fujita H, Aratani S, Eguchi K, Komiya S, Maruyama I, Higashi N, Sato M, Senoo H, Ochi T, Yokoyama S, Amano T, Kim J, Gay S, Fukamizu A, Nishioka K, Tanaka K, Nakajima T (2007) Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase “Synoviolin.” EMBO J 26:113–122

    PubMed  CAS  Google Scholar 

  17. Gao B, Lee SM, Chen A, Zhang J, Zhang DD, Kannan K, Ortmann RA, Fang D (2008) Synoviolin promotes IRE1 ubiquitination and degradation in synovial fibroblasts from mice with collagen-induced arthritis. EMBO Rep 9:480–485

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Kong S, Yang Y, Xu Y, Wang Y, Zhang Y, Melo-Cardenas J, Xu X, Gao B, Thorp EB, Zhang DD, Zhang B, Song J, Zhang K, Zhang J, Zhang J, Li H, Fang D (2016) Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas. Proc Natl Acad Sci USA 113:10394–10399

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Xu Y, Zhao F, Qiu Q, Chen K, Wei J, Kong Q, Gao B, Melo-Cardenas J, Zhang B, Zhang J, Song J, Zhang DD, Zhang J, Fan Y, Li H, Fang D (2016) The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity. Nat Commun 7:12073

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Yang Y, Kong S, Zhang Y, Melo-Cardenas J, Gao B, Zhang Y, Zhang DD, Zhang B, Song J, Thorp E, Zhang K, Zhang J, Fang D (2018) The endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls a critical checkpoint in B cell development in mice. J Biol Chem 293:12934–12944

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Xu Y, Melo-Cardenas J, Zhang Y, Gau I, Wei J, Montauti E, Zhang Y, Gao B, Jin H, Sun Z, Lee SM, Fang D (2019) The E3 ligase Hrd1 stabilizes Tregs by antagonizing inflammatory cytokine-induced ER stress response. JCI Insight 4(5). https://doi.org/10.1172/jci.insight.121887

  22. Mueller B, Lilley BN, Ploegh HL (2006) SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. J Cell Biol 175:261–270

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Christianson JC, Olzmann JA, Shaler TA, Sowa ME, Bennett EJ, Richter CM, Tyler RE, Greenblatt EJ, Harper JW, Kopito RR (2011) Defining human ERAD networks through an integrative mapping strategy. Nat Cell Biol 14:93–105

    PubMed  PubMed Central  Google Scholar 

  24. Sun S, Shi G, Han X, Francisco AB, Ji Y, Mendonça N, Liu X, Locasale JW, Simpson KW, Duhamel GE, Kersten S, Yates JR 3rd, Long Q, Qi L (2014) Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival. Proc Natl Acad Sci USA 111:E582-591

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    PubMed  CAS  Google Scholar 

  26. Lao MX, Xu HS (2020) Involvement of long non-coding RNAs in the pathogenesis of rheumatoid arthritis. Chin Med J 133:941–950

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Xiao J, Lin L, Luo D, Shi L, Chen W, Fan H, Li Z, Ma X, Ni P, Yang L, Xu Z (2020) Long noncoding RNA TRPM2-AS acts as a microRNA sponge of miR-612 to promote gastric cancer progression and radioresistance. Oncogenesis 9:29

    PubMed  PubMed Central  Google Scholar 

  28. Chatterjee S, Bhattcharjee D, Misra S, Saha A, Bhattacharyya NP, Ghosh A (2020) Increase in MEG3, MALAT1, NEAT1 significantly predicts the clinical parameters in patients with rheumatoid arthritis. Pers Med 17:445–457

    CAS  Google Scholar 

  29. Xiao J, Wang R, Zhou W, Cai X, Ye Z (2021) LncRNA NEAT1 regulates the proliferation and production of the inflammatory cytokines in rheumatoid arthritis fibroblast-like synoviocytes by targeting miR-204-5p. Hum Cell 34:372–382

    PubMed  CAS  Google Scholar 

  30. Chakravarty D, Sboner A, Nair SS, Giannopoulou E, Li R, Hennig S, Mosquera JM, Pauwels J, Park K, Kossai M, MacDonald TY, Fontugne J, Erho N, Vergara IA, Ghadessi M, Davicioni E, Jenkins RB, Palanisamy N, Chen Z, Nakagawa S, Hirose T, Bander NH, Beltran H, Fox AH, Elemento O, Rubin MA (2014) The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun 5:5383

    PubMed  CAS  Google Scholar 

  31. Ahmed ASI, Dong K, Liu J, Wen T, Yu L, Xu F, Kang X, Osman I, Hu G, Bunting KM, Crethers D, Gao H, Zhang W, Liu Y, Wen K, Agarwal G, Hirose T, Nakagawa S, Vazdarjanova A, Zhou J (2018) Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proc Natl Acad Sci USA 115:E8660-e8667

    PubMed  PubMed Central  Google Scholar 

  32. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Ménard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS, Vencovský J, Wolfe F, Hawker G (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62:2569–2581

    PubMed  Google Scholar 

  33. Toh ML, Marotte H, Blond JL, Jhumka U, Eljaafari A, Mougin B, Miossec P (2006) Overexpression of synoviolin in peripheral blood and synoviocytes from rheumatoid arthritis patients and continued elevation in nonresponders to infliximab treatment. Arthritis Rheum 54:2109–2118

    PubMed  CAS  Google Scholar 

  34. Wang J, Yan S, Yang J, Lu H, Xu D, Wang Z (2019) Non-coding RNAs in Rheumatoid Arthritis: From Bench to Bedside. Front Immunol 10:3129

    PubMed  CAS  Google Scholar 

  35. Taheri M, Eghtedarian R, Dinger ME, Ghafouri-Fard S (2020) Dysregulation of non-coding RNAs in Rheumatoid arthritis. Biomed & Pharmacother Biomedecine & pharmacotherapie 130:110617

    CAS  Google Scholar 

  36. Shui X, Chen S, Lin J, Kong J, Zhou C, Wu J (2019) Knockdown of lncRNA NEAT1 inhibits Th17/CD4(+) T cell differentiation through reducing the STAT3 protein level. J Cell Physiol 234:22477–22484

    PubMed  CAS  Google Scholar 

  37. Murata K, Furu M, Yoshitomi H, Ishikawa M, Shibuya H, Hashimoto M, Imura Y, Fujii T, Ito H, Mimori T, Matsuda S (2013) Comprehensive microRNA analysis identifies miR-24 and miR-125a-5p as plasma biomarkers for rheumatoid arthritis. PLoS ONE 8:e69118

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Rezaeepoor M, Pourjafar M, Tahamoli-Roudsari A, Basiri Z, Hajilooi M, Solgi G (2020) Altered expression of microRNAs may predict therapeutic response in rheumatoid arthritis patients. Int Immunopharmacol 83:106404

    PubMed  CAS  Google Scholar 

  39. Safari F, Damavandi E, Rostamian AR, Movassaghi S, Imani-Saber Z, Saffari M, Kabuli M, Ghadami M (2021) Plasma Levels of MicroRNA-146a-5p, MicroRNA-24-3p, and MicroRNA-125a-5p as Potential Diagnostic Biomarkers for Rheumatoid Arthris. Iran J Allergy Asthma Immunol 20:326–337

    PubMed  Google Scholar 

  40. Xiaoling G, Shuaibin L, Kailu L (2020) MicroRNA-19b-3p promotes cell proliferation and osteogenic differentiation of BMSCs by interacting with lncRNA H19. BMC Med Genet 21:11

    PubMed  PubMed Central  Google Scholar 

  41. Jiang L, Wang M, Sun R, Lin Z, Liu R, Cai H, Tang Z, Zhang R (2021) Methylation of miR-19b-3p promoter exacerbates inflammatory responses in sepsis-induced ALI via targeting KLF7. Cell Biol Int 45:1666–1675

    PubMed  CAS  Google Scholar 

  42. Xu M, Zhan J, Xie J, Zhu L, Chen L, Luo X, Sheng X, Liu T, Zhang S, Lu Z (2021) MiR-125a-5p inhibits cell proliferation, cell cycle progression, and migration while promoting apoptosis in head and neck cancers by targeting ERBB3. Auris Nasus Larynx 48:477–486

    PubMed  Google Scholar 

  43. Duan L, Duan D, Wei W, Sun Z, Xu H, Guo L, Wu X (2019) MiR-19b-3p attenuates IL-1β induced extracellular matrix degradation and inflammatory injury in chondrocytes by targeting GRK6. Mol Cell Biochem 459:205–214

    PubMed  CAS  Google Scholar 

  44. Li Y, Yuan F, Song Y, Guan X (2020) miR-17-5p and miR-19b-3p prevent osteoarthritis progression by targeting EZH2. Exp Ther Med 20:1653–1663

    PubMed  PubMed Central  Google Scholar 

  45. Xia Q, Wang Q, Lin F, Wang J (2021) miR-125a-5p-abundant exosomes derived from mesenchymal stem cells suppress chondrocyte degeneration via targeting E2F2 in traumatic osteoarthritis. Bioengineered 12:11225–11238

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Connor AM, Mahomed N, Gandhi R, Keystone EC, Berger SA (2012) TNFα modulates protein degradation pathways in rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther 14:R62

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Savic S, Ouboussad L, Dickie LJ, Geiler J, Wong C, Doody GM, Churchman SM, Ponchel F, Emery P, Cook GP, Buch MH, Tooze RM, McDermott MF (2014) TLR dependent XBP-1 activation induces an autocrine loop in rheumatoid arthritis synoviocytes. J Autoimmun 50:59–66

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Qiu Q, Zheng Z, Chang L, Zhao YS, Tan C, Dandekar A, Zhang Z, Lin Z, Gui M, Li X, Zhang T, Kong Q, Li H, Chen S, Chen A, Kaufman RJ, Yang WL, Lin HK, Zhang D, Perlman H, Thorp E, Zhang K, Fang D (2013) Toll-like receptor-mediated IRE1α activation as a therapeutic target for inflammatory arthritis. EMBO J 32:2477–2490

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Izumi NTS, Miyaki S, Ochi M (2015) Stf-083010, the inhibitor of ER stress transducer Ire1, suppresses rheumatoid synovitis. Arthritis Rheumatol 67:3280–3281

    Google Scholar 

  50. Yagishita N, Aratani S, Leach C, Amano T, Yamano Y, Nakatani K, Nishioka K, Nakajima T (2012) RING-finger type E3 ubiquitin ligase inhibitors as novel candidates for the treatment of rheumatoid arthritis. Int J Mol Med 30:1281–1286

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Liu Y, Han Y, Qu H, Fang J, Ye M, Yin W (2019) Correlation of microRNA expression profile with clinical response to tumor necrosis factor inhibitor in treating rheumatoid arthritis patients: A prospective cohort study. J Clin Lab Anal 33:e22953

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the patients and medical staff who generously contributed to this study.

Funding

This research has been supported by grants from Kermanshah University of Medical Sciences (KUMS); Grant No. (4000650).

Author information

Authors and Affiliations

Authors

Contributions

N.K. conceived the study and wrote the manuscript. S.A. and P.S. contributed to sample preparation. S.A.R. and Z.M. took the lead in writing the manuscript. A.G.K and M.P. contributed to the interpretation of the results. A.R. critically revised the manuscript and provided the final approval. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alireza Rezaiemanesh.

Ethics declarations

Ethical statement

The study was performed with the support of the Ethics Committee of the Kermanshah University of medical sciences (IR.KUMS.MED.REC.1400.051) and all methods were performed in accordance with relevant guidelines and regulations. Informed consent was obtained from all patients participating in the study.

Consent for publication

Not Applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karamali, N., Mahmoudi, Z., Roghani, S.A. et al. Overexpression of Synoviolin and miR-125a-5p, miR-19b-3p in peripheral blood of rheumatoid arthritis patients after treatment with conventional DMARDs and methylprednisolone. Clin Rheumatol 43, 147–157 (2024). https://doi.org/10.1007/s10067-023-06808-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-023-06808-0

Keywords

Navigation