Skip to main content

Advertisement

Log in

Association between primary Sjögren’s syndrome and gut microbiota disruption: a systematic review and meta-analysis

  • REVIEW ARTICLE
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Evidence of gut microbiota disruption for numerous autoimmune diseases has accumulated. Recently, the relationship between the microbiota and primary Sjögren’s disease has been increasingly investigated but has yet to be systematically elucidated. Therefore, a meta-analysis of publications dealing on topic was conducted. Case–control studies comparing primary Sjögren’s syndrome patients and healthy controls (HCs) were systematically searched in nine databases from inception to March 1, 2023. The primary result quantitatively evaluated in this meta-analysis was the α-diversity. The secondary results qualitatively extracted and analyzed were the β-diversity and relative abundance. In total, 22 case–control studies covering 915 pSS patients and 2103 HCs were examined. The quantitative analysis revealed a slight reduction in α-diversity in pSS patients compared to HCs, with a lower Shannon–Wiener index (SMD =  − 0.46, (− 0.68, − 0.25), p < 0.0001, I2 = 71%), Chao1 richness estimator (SMD =  − 0.59, (− 0.86, − 0.32), p < 0.0001, I2 = 81%), and ACE index (SMD =  − 0.92, (− 1.64, − 0.19), p = 0.01, I2 = 86%). However, the Simpson index (SMD = 0.01, (− 0.43, 0.46) p = 0.95, I2 = 86%) was similar in the two groups. The β-diversity significantly differed between pSS patients and HCs. Variations in the abundance of specific microbes and their metabolites and potential functions contribute to the pSS pathogenesis. Notably, the abundance of the phylum Firmicutes decreased, while that of Proteobacteria increased. SCFA-producing microbes including Ruminococcaceae, Lachnospiraceae, Faecalibacterium, Butyricicoccus, and Eubacterium hallii were depleted. In addition to diversity, the abundances of some specific microbes were related to clinical parameters. According to this systematic review and meta-analysis, gut microbiota dysbiosis, including reduced diversity, was associated with proinflammatory bacterium enrichment and anti-inflammatory bacterium depletion in pSS patients. Further research on the relationship between the gut microbiota and pSS is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

References

  1. Brito-Zerón P, Baldini C, Bootsma H, Bowman SJ, Jonsson R, Mariette X et al (2016) Sjögren syndrome. Nat Rev Dis Primers 2:16047. https://doi.org/10.1038/nrdp.2016.47

    Article  PubMed  Google Scholar 

  2. Jonsson R, Vogelsang P, Volchenkov R, Espinosa A, Wahren-Herlenius M, Appel S (2011) The complexity of Sjögren’s syndrome: novel aspects on pathogenesis. Immunol Lett 141(1):1–9. https://doi.org/10.1016/j.imlet.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  3. Mavragani CP, Moutsopoulos HM (2010) The geoepidemiology of Sjögren’s syndrome. Autoimmun Rev 9(5):A305–A310. https://doi.org/10.1016/j.autrev.2009.11.004

    Article  PubMed  Google Scholar 

  4. Qin B, Wang J, Yang Z, Yang M, Ma N, Huang F et al (2015) Epidemiology of primary Sjögren’s syndrome: a systematic review and meta-analysis. Ann Rheum Dis 74(11):1983–9. https://doi.org/10.1136/annrheumdis-2014-205375

    Article  CAS  PubMed  Google Scholar 

  5. Manfrè V, Chatzis LG, Cafaro G, Fonzetti S, Calvacchi S, Fulvio G et al (2022) Sjögren’s syndrome: one year in review 2022. Clin Exp Rheumatol 40(12):2211–24. https://doi.org/10.55563/clinexprheumatol/43z8gu

  6. Human Microbiome Project Consortium (2012) A framework for human microbiome research. Nature 486(7402):215–21. https://doi.org/10.1038/nature11209

  7. De Luca F, Shoenfeld Y (2019) The microbiome in autoimmune diseases. Clin Exp Immunol 195(1):74–85. https://doi.org/10.1111/cei.13158

    Article  CAS  PubMed  Google Scholar 

  8. Van de Wiele T, Van Praet JT, Marzorati M, Drennan MB, Elewaut D (2016) How the microbiota shapes rheumatic diseases. Nat Rev Rheumatol 12(7):398–411. https://doi.org/10.1038/nrrheum.2016.85

    Article  CAS  PubMed  Google Scholar 

  9. Coit P, Sawalha AH (2016) The human microbiome in rheumatic autoimmune diseases: a comprehensive review. Clin Immunol 170:70–9. https://doi.org/10.1016/j.clim.2016.07.026

    Article  CAS  PubMed  Google Scholar 

  10. Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330(6012):1768–73. https://doi.org/10.1126/science.1195568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kamada N, Seo SU, Chen GY, Núñez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13(5):321–35. https://doi.org/10.1038/nri3430

    Article  CAS  PubMed  Google Scholar 

  12. Doaré E, Héry-Arnaud G, Devauchelle-Pensec V, Alegria GC (2021) Healthy patients are not the best controls for microbiome-based clinical studies: example of Sjögren’s syndrome in a systematic review. Front Immunol 12:699011. https://doi.org/10.3389/fimmu.2021.699011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Paiva CS, Jones DB, Stern ME, Bian F, Moore QL, Corbiere S et al (2016) Altered mucosal microbiome diversity and disease severity in Sjögren syndrome. Sci Rep 6:23561. https://doi.org/10.1038/srep23561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Verstappen GM, Pringle S, Bootsma H, Kroese FGM (2021) Epithelial-immune cell interplay in primary Sjögren syndrome salivary gland pathogenesis. Nat Rev Rheumatol 17(6):333–48. https://doi.org/10.1038/s41584-021-00605-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim DS, Woo JS, Min HK, Choi JW, Moon JH, Park MJ et al (2021) Short-chain fatty acid butyrate induces IL-10-producing B cells by regulating circadian-clock-related genes to ameliorate Sjögren’s syndrome. J Autoimmun 119:102611. https://doi.org/10.1016/j.jaut.2021.102611

    Article  CAS  PubMed  Google Scholar 

  16. Szymula A, Rosenthal J, Szczerba BM, Bagavant H, Fu SM, Deshmukh US (2014) T cell epitope mimicry between Sjögren’s syndrome antigen A (SSA)/Ro60 and oral, gut, skin and vaginal bacteria. Clin Immunol 152(1–2):1–9. https://doi.org/10.1016/j.clim.2014.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tsigalou C, Stavropoulou E, Bezirtzoglou E (2018) Current insights in microbiome shifts in Sjogren’s syndrome and possible therapeutic interventions. Front Immunol 9:1106. https://doi.org/10.3389/fimmu.2018.01106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van der Meulen TA, Kroese FGM, Bootsma H, Spijkervet FKL, Vissink A (2020) Current insights into the relationship between the gut microbiome and Sjögren’s syndrome. Microb Cell Fact 19(1):210. https://doi.org/10.1186/s12934-020-01471-5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Moon J, Choi SH, Yoon CH, Kim MK (2020) Gut dysbiosis is prevailing in Sjögren’s syndrome and is related to dry eye severity. PloS one 15(2):e0229029. https://doi.org/10.1371/journal.pone.0229029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van der Meulen TA, Harmsen HJM, Vila AV, Kurilshikov A, Liefers SC, Zhernakova A et al (2019) Shared gut, but distinct oral microbiota composition in primary Sjögren’s syndrome and systemic lupus erythematosus. J Autoimmun 97:77–87. https://doi.org/10.1016/j.jaut.2018.10.009

    Article  PubMed  Google Scholar 

  21. Wang X, Pang K, Wang J, Zhang B, Liu Z, Lu S et al (2022) Microbiota dysbiosis in primary Sjögren’s syndrome and the ameliorative effect of hydroxychloroquine. Cell Rep 40(11):111352. https://doi.org/10.1016/j.celrep.2022.111352

    Article  CAS  PubMed  Google Scholar 

  22. Wu GL, Lu HF, Chen YL, Wang Q, Cao H, Li TY (2019) Changes of intestinal microecology in patients with primary Sjogren’s syndrome after therapy of Yangyin Yiqi Huoxue recipe (). Chin J Integr Med 25(9):654–62. https://doi.org/10.1007/s11655-019-2939-4

    Article  CAS  PubMed  Google Scholar 

  23. Bellocchi C, Fernández-Ochoa Á, Montanelli G, Vigone B, Santaniello A, Quirantes-Piné R et al (2019) Identification of a shared microbiomic and metabolomic profile in systemic autoimmune diseases. J Clin Med 8(9):1291. https://doi.org/10.3390/jcm8091291

  24. Cano-Ortiz A, Laborda-Illanes A, Plaza-Andrades I, Membrillo Del Pozo A, Villarrubia Cuadrado A, Rodríguez Calvo de Mora M et al (2020) Connection between the gut microbiome, systemic inflammation, gut permeability and FOXP3 expression in patients with primary Sjögren’s syndrome. Int J Mol Sci 21(22). https://doi.org/10.3390/ijms21228733

  25. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical research ed) 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  Google Scholar 

  26. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–5. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  27. Chu XJ, Cao NW, Zhou HY, Meng X, Guo B, Zhang HY et al (2021) The oral and gut microbiome in rheumatoid arthritis patients: a systematic review. Rheumatology 60(3):1054–66. https://doi.org/10.1093/rheumatology/keaa835

    Article  PubMed  Google Scholar 

  28. Shen T, Yue Y, He T, Huang C, Qu B, Lv W et al (2021) The association between the gut microbiota and Parkinson’s disease, a meta-analysis. Front Aging Neurosci 13:636545. https://doi.org/10.3389/fnagi.2021.636545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou Z, Shi B, Xu Y, Zhang J, Liu X, Zhou X et al (2023) Neural stem/progenitor cell therapy for Alzheimer disease in preclinical rodent models: a systematic review and meta-analysis. Stem Cell Res Ther 14(1):3. https://doi.org/10.1186/s13287-022-03231-1

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bakbergenuly I, Hoaglin DC, Kulinskaya E (2020) Estimation in meta-analyses of mean difference and standardized mean difference. Stat Med 39(2):171–91. https://doi.org/10.1002/sim.8422

    Article  PubMed  Google Scholar 

  31. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J et al (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ (Clinical research ed) 343:d4002. https://doi.org/10.1136/bmj.d4002

    Article  PubMed  Google Scholar 

  32. Chavalarias D, Wallach JD, Li AH, Ioannidis JP (2016) Evolution of reporting p values in the biomedical literature, 1990–2015. Jama 315(11):1141–8. https://doi.org/10.1001/jama.2016.1952

    Article  CAS  PubMed  Google Scholar 

  33. Goodman CF, Doan T, Mehra D, Betz J, Locatelli E, Mangwani-Mordani S et al (2022) Case-control study examining the composition of the gut microbiome in individuals with and without immune-mediated dry eye. Cornea. https://doi.org/10.1097/ico.0000000000003195

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang F, Zhufeng Y, Chen Z, Xu J, Cheng Y (2023) The composition and function profile of the gut microbiota of patients with primary Sjögren’s syndrome. Clin Rheumatol. https://doi.org/10.1007/s10067-022-06451-1

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schaefer L, Trujillo-Vargas CM, Midani FS, Pflugfelder SC, Britton RA, de Paiva CS (2022) Gut microbiota from Sjögren syndrome patients causes decreased T regulatory cells in the lymphoid organs and desiccation-induced corneal barrier disruption in mice. Front Med 9:852918. https://doi.org/10.3389/fmed.2022.852918

    Article  Google Scholar 

  36. Yang L, Xiang Z, Zou J, Zhang Y, Ni Y, Yang J (2022) Comprehensive analysis of the relationships between the gut microbiota and fecal metabolome in individuals with primary Sjogren’s syndrome by 16S rRNA sequencing and LC-MS-based metabolomics. Front Immunol 13:874021. https://doi.org/10.3389/fimmu.2022.874021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mendez R, Watane A, Farhangi M, Cavuoto KM, Leith T, Budree S et al (2020) Gut microbial dysbiosis in individuals with Sjögren’s syndrome. Microb Cell Fact 19(1):90. https://doi.org/10.1186/s12934-020-01348-7

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mandl T, Marsal J, Olsson P, Ohlsson B, Andréasson K (2017) Severe intestinal dysbiosis is prevalent in primary Sjögren’s syndrome and is associated with systemic disease activity. Arthritis Res Ther 19(1):237. https://doi.org/10.1186/s13075-017-1446-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang X, Wang J, Guo W, Zhou Y, Sun C, Li Z et al (2020) Characteristics of intestinal flora in patients with primary Sjögren syndrome. Nan fang yi ke da xue xue bao 40(7):949–57. https://doi.org/10.12122/j.issn.1673-4254.2020.07.06. in Chinese

  40. Xin X, Wang Q, Qing J, Song W, Gui Y, Li X et al (2022) Th17 cells in primary Sjögren’s syndrome negatively correlate with increased Roseburia and Coprococcus. Front Immunol 13:974648. https://doi.org/10.3389/fimmu.2022.974648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jia XM, Wu BX, Chen BD, Li KT, Liu YD, Xu Y et al (2022) Compositional and functional aberrance of the gut microbiota in treatment naïve patients with primary Sjögren’s syndrome. J Autoimmun 134:102958. https://doi.org/10.1016/j.jaut.2022.102958

    Article  PubMed  Google Scholar 

  42. Li Y, Li Z, Sun W, Wang M, Li M (2022) Characteristics of gut microbiota in patients with primary Sjögren’s syndrome in Northern China. PloS one 17(11):e0277270. https://doi.org/10.1371/journal.pone.0277270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wei F, Rong C, Yan C, Cao M, Miao Z, Zhou H (2022) Changes of intestinal flora in patients with Sjogren’s syndrome. Int J Immunol 45(1):15–20. https://rs.yiigle.com/CN231535202201/1351424.htm. (in Chinese)

  44. Xu L (2021) Analysis on the characteristics of intestinal flora in patients with primary biliary cholangitis and Sjögren’s syndrome. Dissertation, Qingdao University. https://doi.org/10.27262/d.cnki.gqdau.2021.000175

  45. Zhang SX (2022) Characteristics of gut microbiota enterotype and their effect on immune system and prognosis in patients with autoimmune diseases. Dissertation, Shanxi Medical University. https://doi.org/10.27288/d.cnki.gsxyu.2022.000003

  46. Mao XJ, Wang J, Zhang MX, Yin XF, Lai NL, Cheng T et al (2020) Structure of intestinal microbial community in patients with Sjögren’s syndrome. Chin J Microecology 32(09):1012–7. https://doi.org/10.13381/j.cnki.cjm.202009005. (in Chinese)

  47. Zhou ZQ (2019) Characteristics of intestinal flora in patients with primary Sjogren’s syndrome with deficiency of both qi and yin. Dissertation, Zhejiang Chinese Medical University

  48. Zhao H, Xu H, Chen S, He J, Zhou Y, Nie Y (2021) Systematic review and meta-analysis of the role of Faecalibacterium prausnitzii alteration in inflammatory bowel disease. J Gastroenterol Hepatol 36(2):320–8. https://doi.org/10.1111/jgh.15222

    Article  CAS  PubMed  Google Scholar 

  49. Tochio T, Kadota Y, Tanaka T, Koga Y (2018) 1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates Faecalibacterium prausnitzii as well as Bifidobacteria in humans. Foods 7(9):140. https://doi.org/10.3390/foods7090140

  50. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L (2016) Bifidobacteria and Butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol 7:979. https://doi.org/10.3389/fmicb.2016.00979

    Article  PubMed  PubMed Central  Google Scholar 

  51. Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294(1):1–8. https://doi.org/10.1111/j.1574-6968.2009.01514.x

    Article  CAS  PubMed  Google Scholar 

  52. Amoroso C, Perillo F, Strati F, Fantini MC, Caprioli F, Facciotti F (2020) The role of gut microbiota biomodulators on mucosal immunity and intestinal inflammation. Cells 9(5):1234. https://doi.org/10.3390/cells9051234

  53. Fasano A (2011) Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 91(1):151–75. https://doi.org/10.1152/physrev.00003.2008

    Article  CAS  PubMed  Google Scholar 

  54. Wang Y, Wei J, Zhang W, Doherty M, Zhang Y, Xie H et al (2022) Gut dysbiosis in rheumatic diseases: a systematic review and meta-analysis of 92 observational studies. EBioMedicine 80:104055. https://doi.org/10.1016/j.ebiom.2022.104055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jung TH, Park JH, Jeon WM, Han KS (2015) Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway. Nutr Res Pract 9(4):343–9. https://doi.org/10.4162/nrp.2015.9.4.343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR et al (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PloS one 7(4):e35240. https://doi.org/10.1371/journal.pone.0035240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461(7268):1282–6. https://doi.org/10.1038/nature08530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fischbach MA, Sonnenburg JL (2011) Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10(4):336–47. https://doi.org/10.1016/j.chom.2011.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573. https://doi.org/10.1126/science.1241165

    Article  CAS  PubMed  Google Scholar 

  60. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504(7480):451–5. https://doi.org/10.1038/nature12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sarigul M, Yazisiz V, Bassorgun CI, Ulker M, Avci AB, Erbasan F et al (2010) The numbers of Foxp3 + Treg cells are positively correlated with higher grade of infiltration at the salivary glands in primary Sjogren’s syndrome. Lupus 19(2):138–45. https://doi.org/10.1177/0961203309348234

    Article  CAS  PubMed  Google Scholar 

  62. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–50. https://doi.org/10.1038/nature12721

    Article  CAS  PubMed  Google Scholar 

  63. Kugadas A, Wright Q, Geddes-McAlister J, Gadjeva M (2017) Role of microbiota in strengthening ocular mucosal barrier function through secretory IgA. Invest Ophthalmol Vis Sci 58(11):4593–600. https://doi.org/10.1167/iovs.17-22119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zaheer M, Wang C, Bian F, Yu Z, Hernandez H, de Souza RG et al (2018) Protective role of commensal bacteria in Sjögren syndrome. J Autoimmun 93:45–56. https://doi.org/10.1016/j.jaut.2018.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang C, Zaheer M, Bian F, Quach D, Swennes AG, Britton RA et al (2018) Sjögren-like lacrimal keratoconjunctivitis in germ-free mice. Int J Mol Sci 19(2). https://doi.org/10.3390/ijms19020565

  66. Yun SW, Son YH, Lee DY, Shin YJ, Han MJ, Kim DH (2021) Lactobacillus plantarum and Bifidobacterium bifidum alleviate dry eye in mice with exorbital lacrimal gland excision by modulating gut inflammation and microbiota. Food Funct 12(6):2489–97. https://doi.org/10.1039/d0fo02984j

    Article  CAS  PubMed  Google Scholar 

  67. Moon J, Ryu JS, Kim JY, Im SH, Kim MK (2020) Effect of IRT5 probiotics on dry eye in the experimental dry eye mouse model. PloS one 15(12):e0243176. https://doi.org/10.1371/journal.pone.0243176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cao Y, Lu H, Xu W, Zhong M (2023) Gut microbiota and Sjögren’s syndrome: a two-sample Mendelian randomization study. Front Immunol 14:1187906. https://doi.org/10.3389/fimmu.2023.1187906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Deschasaux M, Bouter KE, Prodan A, Levin E, Groen AK, Herrema H et al (2018) Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nat Med 24(10):1526–31. https://doi.org/10.1038/s41591-018-0160-1

    Article  CAS  PubMed  Google Scholar 

  70. He Y, Wu W, Zheng HM, Li P, McDonald D, Sheng HF et al (2018) Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med 24(10):1532–5. https://doi.org/10.1038/s41591-018-0164-x

    Article  CAS  PubMed  Google Scholar 

  71. Kumar M, Babaei P, Ji B, Nielsen J (2016) Human gut microbiota and healthy aging: recent developments and future prospective. Nutr Healthy Aging 4(1):3–16. https://doi.org/10.3233/nha-150002

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B et al (2014) Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun 5:4500. https://doi.org/10.1038/ncomms5500

    Article  CAS  PubMed  Google Scholar 

  73. Brito-Zerón P, Acar-Denizli N, Zeher M, Rasmussen A, Seror R, Theander E et al (2017) Influence of geolocation and ethnicity on the phenotypic expression of primary Sjögren’s syndrome at diagnosis in 8310 patients: a cross-sectional study from the Big Data Sjögren Project Consortium. Ann Rheum Dis 76(6):1042–50. https://doi.org/10.1136/annrheumdis-2016-209952

    Article  PubMed  Google Scholar 

  74. Haugen AJ, Peen E, Hultén B, Johannessen AC, Brun JG, Halse AK et al (2008) Estimation of the prevalence of primary Sjögren’s syndrome in two age-different community-based populations using two sets of classification criteria: the Hordaland Health Study. Scand J Rheumatol 37(1):30–4. https://doi.org/10.1080/03009740701678712

    Article  CAS  PubMed  Google Scholar 

  75. Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL, Cohen H (2020) Antibiotics as major disruptors of gut microbiota. Front Cell Infect Microbiol 10:572912. https://doi.org/10.3389/fcimb.2020.572912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ianiro G, Tilg H, Gasbarrini A (2016) Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 65(11):1906–15. https://doi.org/10.1136/gutjnl-2016-312297

    Article  CAS  PubMed  Google Scholar 

  77. Ferrocino I, Di Cagno R, De Angelis M, Turroni S, Vannini L, Bancalari E et al (2015) Fecal microbiota in healthy subjects following omnivore, vegetarian and vegan Diets: culturable populations and rRNA DGGE profiling. PloS one 10(6):e0128669. https://doi.org/10.1371/journal.pone.0128669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108. https://doi.org/10.1126/science.1208344

  79. De Filippis F, Pellegrini N, Laghi L, Gobbetti M, Ercolini D (2016) Unusual sub-genus associations of faecal Prevotella and Bacteroides with specific dietary patterns. Microbiome 4(1):57. https://doi.org/10.1186/s40168-016-0202-1

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zimmer J, Lange B, Frick JS, Sauer H, Zimmermann K, Schwiertz A et al (2012) A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr 66(1):53–60. https://doi.org/10.1038/ejcn.2011.141

    Article  CAS  PubMed  Google Scholar 

  81. Wensel CR, Pluznick JL, Salzberg SL, Sears CL (2022) Next-generation sequencing: insights to advance clinical investigations of the microbiome. J Clin Investig 132(7). https://doi.org/10.1172/jci154944

  82. Mizrahi-Man O, Davenport ER, Gilad Y (2013) Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PloS one 8(1):e53608. https://doi.org/10.1371/journal.pone.0053608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jovel J, Patterson J, Wang W, Hotte N, O’Keefe S, Mitchel T et al (2016) Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol 7:459. https://doi.org/10.3389/fmicb.2016.00459

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge all members who contributed to the study.

Funding

The work on this review was sponsored by the National Natural Science Foundation of China (82074341). The funder and the data provider had no role in the present study, including collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Contributions

All authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship of this article. SY and YX contributed to the conception or design of the work. WQ, LDQ, and YXY contributed to the analysis of the data for the work. SY and LDQ wrote the first draft of the manuscript. WQ and YX critically revised the manuscript for important intellectual content. All authors agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding authors

Correspondence to Donghai Zhou or Xinchang Wang.

Ethics declarations

Disclosures

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 23 KB)

Supplementary file2 (DOCX 2.50 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Yu, X., Wang, Q. et al. Association between primary Sjögren’s syndrome and gut microbiota disruption: a systematic review and meta-analysis. Clin Rheumatol 43, 603–619 (2024). https://doi.org/10.1007/s10067-023-06754-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-023-06754-x

Keywords

Navigation