Skip to main content
Log in

Supplemental hydroxychloroquine therapy regulates adipokines in patients with systemic lupus erythematosus with stable disease

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Background

In patients with systemic lupus erythematosus (SLE), a higher frequency of atherosclerotic lesions is associated with poor prognosis. Hydroxychloroquine (HCQ) has been reported to improve the lifespan and the prognosis of dyslipidaemia in patients with SLE, but the mechanism is unclear. We investigated the effect of supplemental HCQ treatment on the levels of serum cytokines associated with atherosclerosis in patients with stable SLE.

Methods

Patients with SLE who received supplemental HCQ and maintained low disease activity between January 2016 and September 2020 were included in this study. Disease activity was assessed using Safety of Estrogens in Lupus National Assessment-SLE Disease Activity Index, Cutaneous Lupus Erythematous Disease Area and Severity Index, and Lupus Low Disease Activity State. Serum complement titres, anti-dsDNA antibodies, and serum cytokines (adiponectin, resistin, and leptin) were analyzed before and after HCQ treatment.

Results

Forty-one patients (4 males and 37 females, mean age 41.3 ± 13.2 years) were included. Serum adiponectin levels were significantly increased after 3 months of HCQ treatment compared to baseline, and serum resistin levels were significantly reduced. The change in serum resistin level after HCQ administration was correlated with a significant reduction in serum TNF-α, interleukin (IL)-6, IL-8, and IL-1RA levels.

Conclusions

Supplemental HCQ treatment in patients with SLE improved adipokine levels. HCQ may improve prognosis by controlling disease activity in SLE and reducing risk factors for atherosclerosis.

Key Points

• Hydroxychloroquine has been reported to improve the prognosis of dyslipidaemia in patients with SLE, but the underlying mechanism is unclear.

• In this study, hydroxychloroquine improved adipokine levels in patients with SLE, implicating adipokines as a potential mechanism underlying the benefit of hydroxychloroquine on dyslipidaemia.

• Supplemental hydroxychloroquine should be considered in patients with SLE harboring lipid abnormalities and risk factors for atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The dataset supporting the conclusions of this article is available upon reasonable request.

References

  1. Murphy G, Lisnevskaia L, Isenberg D (2013) Systemic lupus erythematosus and other autoimmune rheumatic diseases: challenges to treatment. Lancet 382:809–818

    Article  CAS  PubMed  Google Scholar 

  2. Fava A, Petri M (2019) Systemic lupus erythematosus: diagnosis and clinical management. J Autoimmun 96:1–13

    Article  PubMed  Google Scholar 

  3. Mosca M, Tani C, Aringer M, Bombardieri S, Boumpas D, Brey R et al (2010) European League Against Rheumatism recommendations for monitoring patients with systemic lupus erythematosus in clinical practice and in observational studies. Ann Rheum Dis 69:1269–1274

    Article  CAS  PubMed  Google Scholar 

  4. Fanouriakis A, Kostopoulou M, Alunno A, Aringer M, Bajema I, Boletis JN et al (2019) 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis 78:736–745

    Article  CAS  PubMed  Google Scholar 

  5. Durcan L, Winegar DA, Connelly MA, Otvos JD, Magder LS, Petri M (2016) Longitudinal evaluation of lipoprotein parameters in systemic lupus erythematosus reveals adverse changes with disease activity and prednisone and more favorable profiles with hydroxychloroquine therapy. J Rheumatol 43:745–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Katz G, Smilowitz NR, Blazer A, Clancy R, Buyon JP, Berger JS (2019) Systemic lupus erythematosus and increased prevalence of atherosclerotic cardiovascular disease in hospitalized patients. Mayo Clin Proc 94:1436–1443

    Article  PubMed  Google Scholar 

  7. Babary H, Liu X, Ayatollahi Y, Chen XP, Doo L, Uppaluru LK et al (2018) Favorable effects of hydroxychloroquine on serum low density lipid in patients with systemic lupus erythematosus: a systematic review and meta-analysis. Int J Rheum Dis 21:84–92

    Article  CAS  PubMed  Google Scholar 

  8. Yang DH, Leong PY, Sia SK, Wang YH, Wei JC (2019) Long-term hydroxychloroquine therapy and risk of coronary artery disease in patients with systemic lupus erythematosus. J Clin Med 8:796

    Article  CAS  PubMed Central  Google Scholar 

  9. Rempenault C, Combe B, Barnetche T, Gaujoux-Viala C, Lukas C, Morel J et al (2018) Metabolic and cardiovascular benefits of hydroxychloroquine in patients with rheumatoid arthritis: a systematic review and meta-analysis. Ann Rheum Dis 77:98–103

    Article  CAS  PubMed  Google Scholar 

  10. Wasko MCM, McClure CK, Kelsey SF, Huber K, Orchard T, Toledo FGS (2015) Antidiabetogenic effects of hydroxychloroquine on insulin sensitivity and beta cell function: a randomised trial. Diabetologia 58:2336–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Toledo FGS, Miller RG, Helbling NL, Zhang Y, DeLany JP (2021) The effects of hydroxychloroquine on insulin sensitivity, insulin clearance and inflammation in insulin-resistant adults: a randomized trial. Diabetes Obes Metab 23:1252–1261

    Article  CAS  PubMed  Google Scholar 

  12. Petri M (1996) Thrombosis and systemic lupus erythematosus: the Hopkins Lupus Cohort perspective. Scand J Rheumatol 25:191–193

    Article  CAS  PubMed  Google Scholar 

  13. Ruiz-Irastorza G, Egurbide M-V, Pijoan J-I, Garmendia M, Villar I, Martinez-Berriotxoa A, Erdozain J-G, Aguirre C (2006) Effect of antimalarials on thrombosis and survival in patients with systemic lupus erythematosus. Lupus 15:577–583

    Article  CAS  PubMed  Google Scholar 

  14. Mok CC, Tse SM, Chan KL, Ho LY (2018) Effect of immunosuppressive therapies on survival of systemic lupus erythematosus: a propensity score analysis of a longitudinal cohort. Lupus 27:722–727

    Article  CAS  PubMed  Google Scholar 

  15. Petri M, Orbai AM, Alarcón GS, Gordon C, Merrill JT, Fortin PR et al (2012) Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64:2677–2686

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bertsias GK, Tektonidou M, Amoura Z, Aringer M, Bajema I, Berden JH et al (2012) Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of adult and paediatric lupus nephritis. Ann Rheum Dis 71:1771–1782

    Article  CAS  PubMed  Google Scholar 

  17. Petri M, Kim MY, Kalunian KC, Grossman J, Hahn BH, Sammaritano LR et al (2005) Combined oral contraceptives in women with systemic lupus erythematosus. N Engl J Med 353:2550–2558

    Article  CAS  PubMed  Google Scholar 

  18. Franklyn K, Lau CS, Navarra SV, Louthrenoo W, Lateef A, Hamijoyo L et al (2016) Definition and initial validation of a Lupus Low Disease Activity State (LLDAS). Ann Rheum Dis 75:1615–1621

    Article  CAS  PubMed  Google Scholar 

  19. Albrecht J, Taylor L, Berlin JA, Dulay S, Ang G, Fakharzadeh S et al (2005) The CLASI (Cutaneous Lupus Erythematosus Disease Area and Severity Index): an outcome instrument for cutaneous lupus erythematosus. J Invest Dermatol 125:889–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li X, Zhang D, Vatner DF, Goedeke L, Hirabara SM, Zhang Y et al (2020) Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice. Proc Natl Acad Sci U S A 117:32584–32593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ahlstrom P, Rai E, Chakma S, Cho HH, Rengasamy P, Sweeney G (2017) Adiponectin improves insulin sensitivity via activation of autophagic flux. J Mol Endocrinol 59:339–350

    Article  CAS  PubMed  Google Scholar 

  22. Qiao X, Zhou ZC, Niu R, Su YT, Sun Y, Liu HL et al (2019) Hydroxychloroquine improves obesity-associated insulin resistance and hepatic steatosis by regulating lipid metabolism. Front Pharmacol 10:855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gamez-Nava JI, Diaz-Rizo V, Perez-Guerrero EE, Muñoz-Valle JF, Saldaña-Cruz AM, Fajardo-Robledo NS et al (2020) Assessment of serum macrophage migration inhibitory factor (MIF), adiponectin, and other adipokines as potential markers of proteinuria and renal dysfunction in lupus nephritis: a cross-sectional study. Biomark Res 8:55

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hutcheson J, Ye Y, Han J, Arriens C, Saxena R, Li QZ et al (2015) Resistin as a potential marker of renal disease in lupus nephritis: an adipokine marker in lupus nephritis. Clin Exp Immunol 179:435–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen H, Shi B, Feng X, Kong W, Chen W, Geng L et al (2015) Leptin and neutrophil-activating peptide 2 promote Mesenchymal stem cell senescence through activation of the phosphatidylinositol 3-kinase/Akt pathway in patients with systemic lupus Erythematosus. Arthritis Rheumatol 67:2383–2393

    Article  CAS  PubMed  Google Scholar 

  26. Diaz-Rizo V, Bonilla-Lara D, Gonzalez-Lopez L, Sanchez-Mosco D, Fajardo-Robledo NS, Perez-Guerrero EE et al (2017) Serum levels of adiponectin and leptin as biomarkers of proteinuria in lupus nephritis. PLoS ONE 12:e0184056

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dini AA, Wang P, Ye DQ (2017) Serum adiponectin levels in patients with systemic lupus erythematosus: a meta-analysis. J Clin Rheumatol 23:361–367

    Article  PubMed  Google Scholar 

  28. Chougule D, Nadkar M, Venkataraman K, Rajadhyaksha A, Hase N, Jamale T et al (2018) Adipokine interactions promote the pathogenesis of systemic lupus erythematosus. Cytokine 111:20–27

    Article  CAS  PubMed  Google Scholar 

  29. Huang Q, Tao SS, Zhang YJ, Zhang C, Li LJ, Zhao W et al (2015) Serum resistin levels in patients with rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. Clin Rheumatol 34:1713–1720

    Article  PubMed  Google Scholar 

  30. Almehed K, d’Elia HF, Bokarewa M, Carlsten H (2008) Role of resistin as a marker of inflammation in systemic lupus erythematosus. Arthritis Res Ther 10:R15

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yan C, Yu L, Zhang XL, Shang JJ, Ren J, Fan J et al (2020) Cytokine profiling in Chinese SLE patients: correlations with renal dysfunction. J Immunol Res 2020:8146502. https://doi.org/10.1155/2020/8146502

  32. Soliman S, Mohan C (2017) Lupus nephritis biomarkers. Clin Immunol 185:10–20

    Article  CAS  PubMed  Google Scholar 

  33. Filkova M, Haluzık M, Gay S, Senolt L (2009) The role of resistin as a regulator of inflammation: implications for various human pathologies. Clin Immunol 133:157–170

    Article  CAS  PubMed  Google Scholar 

  34. Tripathi D, Kant S, Pandey S, Ehtesham NZ (2020) Resistin in metabolism, inflammation, and disease. FEBS J 287:3141–3149

    Article  CAS  PubMed  Google Scholar 

  35. Atawia RT, Bunch KL, Toque HA, Caldwell RB, Caldwell RW (2019) Mechanisms of obesity-induced metabolic and vascular dysfunctions. Front Biosci (Landmark Ed) 24:890–934

    Article  Google Scholar 

  36. Pang SS, Le YY (2006) Role of resistin in inflammation and inflammation-related diseases. Cell Mol Immunol 3:29–34

    CAS  PubMed  Google Scholar 

  37. Acquarone E, Monacelli F, Borghi R, Nencioni A, Odetti P (2019) Resistin: a reappraisal. Mech Ageing Dev 178:46–63

    Article  CAS  PubMed  Google Scholar 

  38. Park HK, Ahima RS (2013) Resistin in rodents and humans. Diabetes Metab J 37:404–414

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vuolteenaho K, Tuure L, Nieminen R, Laasonen L, Leirisalo-Repo M, Moilanen E et al (2021) Pretreatment resistin levels are associated with erosive disease in early rheumatoid arthritis treated with disease-modifying anti-rheumatic drugs and infliximab. Scand J Rheumatol 15:1–6

    Google Scholar 

  40. Santos FMM, Telles RW, Lanna CCD, Teixeira AL, Miranda AS, Rocha NP et al (2017) Adipokines, tumor necrosis factor and its receptors in female patients with systemic lupus erythematosus. Lupus 26:10–16

    Article  CAS  PubMed  Google Scholar 

  41. Fox RI (1993) Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin Arthritis Rheum 23:82–91

    Article  CAS  PubMed  Google Scholar 

  42. Schrezenmeier E, Dörner T (2020) Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 16:155–166

    Article  CAS  PubMed  Google Scholar 

  43. Abdel-Hamid AA, Firgany AE (2016) Favorable outcomes of hydroxychloroquine in insulin resistance may be accomplished by adjustment of the endothelial dysfunction as well as the skewed balance of adipokines. Acta Histochem 118:560–573

    Article  CAS  PubMed  Google Scholar 

  44. Qatanani M, Szwergold NR, Greaves DR, Ahima RS, Lazar MA (2009) Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice. J Clin Invest 119:531–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Enago (https://www.enago.jp) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be submitted for publication. RW and HD planned the study and wrote the manuscript. RW conducted the study and interpreted the results together with KU, SN, HS, TK, NM, MK, TM, KS, MM, RM, and HD. RW and NM conducted statistical analysis of the data obtained in the study. HD and NK reviewed the manuscript for intellectual content. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Risa Wakiya.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the ethical committee of Kagawa University (Heisei30-047) and was prospectively registered. All participants gave written informed consent prior to entering the study. The study was conducted in accordance with the Declaration of Helsinki.

Consent for publication

Not applicable.

Disclosures

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author’s comment

This manuscript has been published as a preprint at https://www.researchsquare.com/article/rs-942050/v1.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Supplementary file2 (PDF 166 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakiya, R., Ueeda, K., Shimada, H. et al. Supplemental hydroxychloroquine therapy regulates adipokines in patients with systemic lupus erythematosus with stable disease. Clin Rheumatol 41, 3345–3353 (2022). https://doi.org/10.1007/s10067-022-06282-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-022-06282-0

Keywords

Navigation