Skip to main content

Advertisement

Log in

Effects of rituximab therapy on B cell differentiation and depletion

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Rituximab is a human/murine chimeric anti-CD20 monoclonal antibody. It is largely used to treat B cell malignancies and has become standard in the management of B cell‑mediated diseases such as rheumatoid arthritis and granulomatosis with polyangitis. The effects of rituximab need to be monitored by B cell phenotyping. Evaluate possible surface markers for monitoring B cell development in response to rituximab treatment. This review discusses the literature on the B cell surface markers analysed by flow cytometry in patients treated with rituximab. A panel of biomarkers of response to treatment to monitor by flow cytometry is also suggested. B cell phenotyping is useful to predict clinical relapses after rituximab treatment. The proposed panel of biomarkers includes CD38++CD24++IgD+/− immature B cells and IgDCD38+/− memory B cells. In responders, Th1/Th2 balance and tolerance cells (CD4+CD25+CD127−/low Treg cells and CD19+CD24hiCD38hi Breg cells) tend to be restored after rituximab therapy. Furthermore, in responder patients, indirect depletion of CD19+/-CD27++CD38++ preplasma cells can be proposed as a predictor of response. Flow cytometric analysis of samples from patients treated with rituximab is a useful strategy to stratify patients according to response to treatment. Identification of B cell differentiation stages by means of a specific flow cytometry panel could improve monitoring of rituximab effects and enable non-responders to be distinguished from good responders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CD:

Cluster of differentiation

NHLs:

Non-Hodgkin lymphomas

CLL:

Chronic lymphocytic leukemia

mAb:

Monoclonal antibody

CDC:

Complement-dependent cytotoxicity

ADCC:

Antibody-dependent cellular cytotoxicity

Fc:

Fragment crystallizable

Ig:

Immunoglobulin

GC cells:

Germinal center cells

TNF:

Tumor necrosis factor

Th:

T helper

NK:

Natural killer

NKT-like:

Natural killer T cells

Breg:

Regulatory B cells

TGF:

Transforming growth factor

INF:

Interferon

IL:

Interleukin

References

  1. Salles G, Barrett M, Foà R, Maurer J, O'Brien S, Valente N, Wenger M, Maloney DG (2017) Rituximab in B-cell hematologic malignancies: a review of 20 years of clinical experience. Adv Ther 34(10):2232–2273. https://doi.org/10.1007/s12325-017-0612-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pavanello F, Zucca E, Ghielmini M (Feb. 2017) Rituximab: 13 open questions after 20years of clinical use. Cancer Treat Rev 53:38–46. https://doi.org/10.1016/j.ctrv.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  3. Lee I et al (2019) Comparisons of 131I-rituximab treatment responses in patients with aggressive lymphoma and indolent lymphoma. Ann Nucl Med. https://doi.org/10.1007/s12149-019-01401-5

  4. García-Muñoz R et al (2019) Safety of switching from intravenous to subcutaneous rituximab during first-line treatment of patients with non-Hodgkin lymphoma: the Spanish population of the MabRella study. Br J Haematol. https://doi.org/10.1111/bjh.16227

  5. Cylwik B, Gruszewska E, Gindzienska-Sieskiewicz E, Kowal-Bielecka O, Chrostek L (2019) Serum profile of transferrin isoforms in rheumatoid arthritis treated with biological drugs. Clin Biochem. https://doi.org/10.1016/j.clinbiochem.2019.10.005

  6. Fui A et al (2019) Rituximab therapy in interstitial lung disease associated with rheumatoid arthritis. Intern Med J. https://doi.org/10.1111/imj.14306

  7. Geetha D, Kallenberg C, Stone JH, Salama AD, Appel GB, Duna G, Brunetta P, Jayne D (2015) Current therapy of granulomatosis with polyangiitis and microscopic polyangiitis: the role of rituximab. J Nephrol 28:17–27. https://doi.org/10.1007/s40620-014-0135-3

    Article  CAS  PubMed  Google Scholar 

  8. Hill A, Hill QA (2018) Autoimmune hemolytic anemia. Hematology. American Society of Hematology. Educ Program (1):382–389. https://doi.org/10.1182/asheducation-2018.1.382

  9. Cooper N (2017) State of the art – how I manage immune thrombocytopenia. Br J Haematol 177(1):39–54. https://doi.org/10.1111/bjh.14515

    Article  PubMed  Google Scholar 

  10. Jansson AF, Sengler C, Kuemmerle-Deschner J, Gruhn B, Kranz AB, Lehmann H, Kleinert D, Pape L, Girschick HJ, Foeldvari I, Haffner D, Haas JP, Moebius D, Foell D, Peitz J, Grote V (Jan. 2011) B cell depletion for autoimmune diseases in paediatric patients. Clin Rheumatol 30(1):87–97. https://doi.org/10.1007/s10067-010-1630-0

    Article  PubMed  Google Scholar 

  11. Einarsson JT, Evert M, Geborek P, Saxne T, Lundgren M, Kapetanovic MC (Dec. 2017) Rituximab in clinical practice: dosage, drug adherence, Ig levels, infections, and drug antibodies. Clin Rheumatol 36(12):2743–2750. https://doi.org/10.1007/s10067-017-3848-6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mohammed R, Milne A, Kayani K, Ojha U (Feb. 2019) How the discovery of rituximab impacted the treatment of B-cell non-Hodgkin’s lymphomas. J Blood Med 10:71–84. https://doi.org/10.2147/JBM.S190784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Golay J, Semenzato G, Rambaldi A, Foà R, Gaidano G, Gamba E, Pane F, Pinto A, Specchia G, Zaja F, Regazzi M (Nov. 2013) Lessons for the clinic from rituximab pharmacokinetics and pharmacodynamics. mAbs 5(6):826–837. https://doi.org/10.4161/mabs.26008

    Article  PubMed  PubMed Central  Google Scholar 

  14. Evans R, Salama AD (2014) Update on rituximab: an established treatment for all immune-mediated kidney diseases? Nephron Clin Pract 126(3):97–109. https://doi.org/10.1159/000358887

    Article  CAS  PubMed  Google Scholar 

  15. Regazzi MB, Iacona I, Avanzini MA, Arcaini L, Merlini G, Perfetti V, Zaja F, Montagna M, Morra E, Lazzarino M (Dec. 2005) Pharmacokinetic behavior of rituximab: a study of different schedules of administration for heterogeneous clinical settings. Ther Drug Monit 27(6):785–792. https://doi.org/10.1097/01.ftd.0000184162.60197.c1

    Article  CAS  PubMed  Google Scholar 

  16. Rozman S, Grabnar I, Novaković S, Mrhar A, Jezeršek Novaković B (Aug. 2017) Population pharmacokinetics of rituximab in patients with diffuse large B-cell lymphoma and association with clinical outcome. Br J Clin Pharmacol 83(8):1782–1790. https://doi.org/10.1111/bcp.13271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brezinschek H-P, Rainer F, Brickmann K, Graninger WB (2012) B lymphocyte-typing for prediction of clinical response to rituximab. Arthritis Res Ther 14(4):R161. https://doi.org/10.1186/ar3901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. von Borstel A et al (2019) CD27+CD38hi B cell frequency during remission predicts relapsing disease in granulomatosis with Polyangiitis patients. Front Immunol 10:2221. https://doi.org/10.3389/fimmu.2019.02221

    Article  CAS  Google Scholar 

  19. Vital EM et al (2011) Reduced-dose rituximab in rheumatoid arthritis: efficacy depends on degree of B cell depletion. Arthritis Rheum 63(3):603–608. https://doi.org/10.1002/art.30152

    Article  CAS  PubMed  Google Scholar 

  20. Vital EM et al (2010) Management of nonresponse to rituximab in rheumatoid arthritis: predictors and outcome of re-treatment. Arthritis Rheum 62(5):1273–1279. https://doi.org/10.1002/art.27359

    Article  CAS  PubMed  Google Scholar 

  21. Edwards JCW et al (2004) Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 350(25):2572–2581. https://doi.org/10.1056/NEJMoa032534

    Article  CAS  PubMed  Google Scholar 

  22. Jacobi AM et al (Jun. 2008) Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95. Arthritis Rheum 58(6):1762–1773. https://doi.org/10.1002/art.23498

    Article  CAS  PubMed  Google Scholar 

  23. Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44(4):655–667. https://doi.org/10.1194/jlr.R200021-JLR200

    Article  CAS  PubMed  Google Scholar 

  24. Wang K, Wei G, Liu D (2012) CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol 1(1):36. https://doi.org/10.1186/2162-3619-1-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weiner GJ (Apr. 2010) Rituximab: mechanism of action. Semin Hematol 47(2):115–123. https://doi.org/10.1053/j.seminhematol.2010.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Florentina P, Binder CJ (2019) Impact of B-cell–targeted therapies on cardiovascular disease. Arterioscler Thromb Vasc Biol 39(9):1705–1714. https://doi.org/10.1161/ATVBAHA.119.311996

    Article  CAS  Google Scholar 

  27. Deans JP, Li H, Polyak MJ (2002) CD20-mediated apoptosis: signalling through lipid rafts. Immunology 107(2):176–182. https://doi.org/10.1046/j.1365-2567.2002.01495.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bemark M (2015) Translating transitions – how to decipher peripheral human B cell development. J Biomed Res 29(4):264–284. https://doi.org/10.7555/JBR.29.20150035

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sims GP, Ettinger R, Shirota Y, Yarboro CH, Illei GG, Lipsky PE (2005) Identification and characterization of circulating human transitional B cells. Blood 105(11):4390–4398. https://doi.org/10.1182/blood-2004-11-4284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rezvani AR, Maloney DG (Jun. 2011) Rituximab Resistance. Best Pract Res Clin Haematol 24(2):203–216. https://doi.org/10.1016/j.beha.2011.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bonavida B (2014) Postulated mechanisms of resistance of B-NHL to rituximab treatment regimens: strategies to overcome resistance. Semin Oncol 41(5):667–677. https://doi.org/10.1053/j.seminoncol.2014.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qian Y, Ke Q, Wang Z, Zhang B (2015) Regulation of IgD expression and its role in B cell transformation. Blood 126(23):2230–2230. https://doi.org/10.1182/blood.V126.23.2230.2230

    Article  Google Scholar 

  33. Ramwadhdoebe TH et al (2019) Effect of rituximab treatment on T and B cell subsets in lymph node biopsies of patients with rheumatoid arthritis. Rheumatol Oxf Engl 58(6):1075–1085. https://doi.org/10.1093/rheumatology/key428

    Article  Google Scholar 

  34. Dass S, Rawstron AC, Vital EM, Henshaw K, McGonagle D, Emery P (Oct. 2008) Highly sensitive B cell analysis predicts response to rituximab therapy in rheumatoid arthritis. Arthritis Rheum 58(10):2993–2999. https://doi.org/10.1002/art.23902

    Article  CAS  PubMed  Google Scholar 

  35. Grigoriadou S, Chowdhury F, Pontarini E, Tappuni A, Bowman SJ, Bombardieri M (2019) B cell depletion with rituximab in the treatment of primary Sjögren’s syndrome: what have we learnt? Clin Exp Rheumatol 37 Suppl 118(3):217–224

    PubMed  Google Scholar 

  36. Gomez Mendez LM et al (2018) Peripheral blood B cell depletion after rituximab and complete response in lupus nephritis. Clin J Am Soc Nephrol 13(10):1502–1509. https://doi.org/10.2215/CJN.01070118

    Article  PubMed  PubMed Central  Google Scholar 

  37. Memon AB et al (2018) Long-term safety of rituximab induced peripheral B-cell depletion in autoimmune neurological diseases. PLoS One 13(1):e0190425. https://doi.org/10.1371/journal.pone.0190425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hamblin TJ (2003) CD38: what is it there for? Blood 102(6):1939–1940. https://doi.org/10.1182/blood-2003-07-2332

    Article  CAS  Google Scholar 

  39. Robak T, Błoński J, Skotnicki AB, Piotrowska M, Wróbel T, Rybka J, Kłoczko J, Bołkun Ł, Budziszewska BK, Walczak U, Uss A, Fidecka M, Smolewski P (2018) Rituximab, cladribine, and cyclophosphamide (RCC) induction with rituximab maintenance in chronic lymphocytic leukemia: PALG - CLL4 (ML21283) trial. Eur J Haematol 100(5):465–474. https://doi.org/10.1111/ejh.13042

    Article  CAS  PubMed  Google Scholar 

  40. Agematsu K (2000) Memory B cells and CD27. Histol Histopathol 15(2):573–576. https://doi.org/10.14670/HH-15.573

    Article  CAS  PubMed  Google Scholar 

  41. Sellam J et al (2011) Blood memory B cells are disturbed and predict the response to rituximab in patients with rheumatoid arthritis. Arthritis Rheum 63(12):3692–3701. https://doi.org/10.1002/art.30599

    Article  CAS  PubMed  Google Scholar 

  42. Roll P, Palanichamy A, Kneitz C, Dorner T, Tony H-P (2006) Regeneration of B cell subsets after transient B cell depletion using anti-CD20 antibodies in rheumatoid arthritis. Arthritis Rheum 54(8):2377–2386. https://doi.org/10.1002/art.22019

    Article  CAS  PubMed  Google Scholar 

  43. Wu Y-CB, Kipling D, Dunn-Walters DK (2011) The relationship between CD27 negative and positive B cell populations in human peripheral blood. Front Immunol 2:81. https://doi.org/10.3389/fimmu.2011.00081

    Article  PubMed  PubMed Central  Google Scholar 

  44. Anolik JH, Looney RJ, Lund FE, Randall TD, Sanz I (2009) Insights into the heterogeneity of human B cells: diverse functions, roles in autoimmunity, and use as therapeutic targets. Immunol Res 45(2–3):144–158. https://doi.org/10.1007/s12026-009-8096-7

    Article  PubMed  Google Scholar 

  45. Sanz I, Wei C, Lee FE-H, Anolik J (2008) Phenotypic and functional heterogeneity of human memory B cells. Semin Immunol 20(1):67–82. https://doi.org/10.1016/j.smim.2007.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Möller B et al (2009) Class-switched B cells display response to therapeutic B-cell depletion in rheumatoid arthritis. Arthritis Res Ther 11(3):R62. https://doi.org/10.1186/ar2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rehnberg M, Amu S, Tarkowski A, Bokarewa MI, Brisslert M (2009) Short- and long-term effects of anti-CD20 treatment on B cell ontogeny in bone marrow of patients with rheumatoid arthritis. Arthritis Res Ther 11(4):R123. https://doi.org/10.1186/ar2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bensalem A et al (2019) CD4+ count-dependent concentration-effect relationship of rituximab in rheumatoid arthritis. Br J Clin Pharmacol. https://doi.org/10.1111/bcp.14102

  49. Schwaneck EC et al (2019) T cells, natural killer cells, and γδT cells in a large patient cohort with rheumatoid arthritis: influence of age and anti-rheumatic therapy. Scand J Rheumatol:1–5. https://doi.org/10.1080/03009742.2019.1634755

  50. Vallerskog T et al (2007) Treatment with rituximab affects both the cellular and the humoral arm of the immune system in patients with SLE. Clin Immunol Orlando Fla 122(1):62–74. https://doi.org/10.1016/j.clim.2006.08.016

    Article  CAS  Google Scholar 

  51. Vigna-Perez M et al (2006) Clinical and immunological effects of Rituximab in patients with lupus nephritis refractory to conventional therapy: a pilot study. Arthritis Res Ther 8(3):R83. https://doi.org/10.1186/ar1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gunnarsson I, Sundelin B, Jónsdóttir T, Jacobson SH, Henriksson EW, van Vollenhoven RF (2007) Histopathologic and clinical outcome of rituximab treatment in patients with cyclophosphamide-resistant proliferative lupus nephritis. Arthritis Rheum 56(4):1263–1272. https://doi.org/10.1002/art.22505

    Article  CAS  PubMed  Google Scholar 

  53. Sfikakis PP et al (2005) Remission of proliferative lupus nephritis following B cell depletion therapy is preceded by down-regulation of the T cell costimulatory molecule CD40 ligand: an open-label trial. Arthritis Rheum 52(2):501–513. https://doi.org/10.1002/art.20858

    Article  CAS  PubMed  Google Scholar 

  54. Antonopoulos I, Daoussis D, Lalioti ME, Markatseli TE, Drosos AA, Taraviras S, Andonopoulos AP, Liossis SC (2019) B cell depletion treatment decreases CD4+IL4+ and CD4+CD40L+ T cells in patients with systemic sclerosis. Rheumatol Int 39(11):1889–1898. https://doi.org/10.1007/s00296-019-04350-4

    Article  CAS  PubMed  Google Scholar 

  55. Mauri C, Blair PA (2010) Regulatory B cells in autoimmunity: developments and controversies. Nat Rev Rheumatol 6(11):636–643. https://doi.org/10.1038/nrrheum.2010.140

    Article  CAS  PubMed  Google Scholar 

  56. Rosser EC, Mauri C (2015) Regulatory B cells: origin, phenotype, and function. Immunity 42(4):607–612. https://doi.org/10.1016/j.immuni.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  57. Boulassel M-R, al Qarni Z, Burney I, Khan H, al-Zubaidi A, al Naamani A, al-Hinai H, al-Badi A, Qureshi RN, Panjwani V, al Farsi K (Dec. 2018) Levels of regulatory T cells and invariant natural killer cells and their associations with regulatory B cells in patients with non-Hodgkin lymphoma. Mol Clin Oncol 9(6):677–682. https://doi.org/10.3892/mco.2018.1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Quan C et al (2015) The immune balance between memory and regulatory B cells in NMO and the changes of the balance after methylprednisolone or rituximab therapy. J Neuroimmunol 282:45–53. https://doi.org/10.1016/j.jneuroim.2015.03.016

    Article  CAS  PubMed  Google Scholar 

  59. Gudbrandsdottir S, Brimnes M, Køllgaard T, Hasselbalch HC, Nielsen CH (2018) Effects of rituximab and dexamethasone on regulatory and proinflammatory B-cell subsets in patients with primary immune thrombocytopenia. Eur J Haematol 100(1):45–52. https://doi.org/10.1111/ejh.12978

    Article  CAS  PubMed  Google Scholar 

  60. Jing S, Lu J, Song J, Luo S, Zhou L, Quan C, Xi J, Zhao C (2019) Effect of low-dose rituximab treatment on T- and B-cell lymphocyte imbalance in refractory myasthenia gravis. J Neuroimmunol 332:216–223. https://doi.org/10.1016/j.jneuroim.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  61. Lucchini E, Zaja F, Bussel J (2019) Rituximab in the treatment of immune thrombocytopenia: what is the role of this agent in 2019? Haematologica 104(6):1124–1135. https://doi.org/10.3324/haematol.2019.218883

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The present work was performed at Siena University.

Author information

Authors and Affiliations

Authors

Contributions

LB had the idea for the article, LB PC LV CV AP literature search, LB PC Md data analysis, LB Md drafted the work and EB BF PS critically revised the work.

Corresponding author

Correspondence to L. Bergantini.

Ethics declarations

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergantini, L., d’Alessandro, M., Cameli, P. et al. Effects of rituximab therapy on B cell differentiation and depletion. Clin Rheumatol 39, 1415–1421 (2020). https://doi.org/10.1007/s10067-020-04996-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-020-04996-7

Keywords

Navigation