Skip to main content
Log in

Serum/plasma homocysteine levels in patients with systemic lupus erythematosus: a systematic review and meta-analysis

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Published studies have shown contradictory results in the association of serum/plasma levels of homocysteine (HCY) with systemic lupus erythematosus (SLE). This study is to systematically evaluate the association of serum/plasma HCY levels in SLE. A search was done using PubMed, Embase, Web of Science, and ScienceDirect databases up to 7 April 2019. Thirty-six articles including 2919 SLE patients and 3120 healthy controls were finally included in this meta-analysis. The HCY levels were significantly higher in SLE patients than in healthy controls (P < 0.001). The subgroup analysis revealed that Asian, African, Arab, Mixed, White and others as well as ages (< 35 and ≥ 35) had significant higher HCY levels in SLE patients than in the healthy controls. The study indicated that patients with disease activity index scores < 8 (P < 0.001) and ≥ 8 (P = 0.003) of SLE had significant higher HCY levels as compared with the healthy controls. It was also revealed that disease duration in SLE patients for < 10 and ≥ 10 years (P < 0.001) had significant higher HCY levels as compared with the healthy controls. A significant higher HCY level for body mass index (< 23 and ≥ 23) was found as well as measurement type in SLE patients than healthy controls. This meta-analysis demonstrated higher HCY levels in patients with SLE than healthy controls, suggesting a possible role of HCY in the disease.

Key Points

• Homocysteine (HCY) is closely related to the mechanisms of systemic lupus erythematosus (SLE).

• This study reveals a significant correlation between HCY levels and the various indexes of disease activity.

• This study reveals that medication may influence HCY levels in SLE.

• This study also discovers that the subgroup analysis of all the factors influences the HCY levels in SLE patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wakeland EK, Liu K, Graham RR, Behrens TW (2001) Delineating the genetic basis of systemic lupus erythematosus. Immunity 15:397–408

    CAS  PubMed  Google Scholar 

  2. Tsao BP (2004) Update on human systemic lupus erythematosus genetics. Curr Opin Rheumatol 16:513–521

    CAS  PubMed  Google Scholar 

  3. Croker JA, Kimberly RP (2005) Genetics of susceptibility and severity in systemic lupus erythematosus. Curr Opin Rheumatol 17:529–537

    CAS  PubMed  Google Scholar 

  4. Prokunina L, Alarcon-Riquelme M (2004) The genetic basis of systemic lupus erythematosus – knowledge of today and thoughts for tomorrow. Hum Mol Genet 13:R143–R148

    CAS  PubMed  Google Scholar 

  5. Kelly JA, Moser KL, Harley JB (2002) The genetics of systemic lupus erythematosus: putting the pieces together. Genes Immun 3:S71–S85

    CAS  PubMed  Google Scholar 

  6. Oelke K, Richardson B (2002) Pathogenesis of lupus. Arthritis Rheum 47:343–345

    PubMed  Google Scholar 

  7. Koutouzov S, Jeronimo AL, Campos H, Amoura Z (2004) Nucleosomes in the pathogenesis of systemic lupus erythematosus. Rheum Dis Clin N Am 30:529–558

    Google Scholar 

  8. Liang B, Mamula MJ (2000) Molecular mimicry and the role of B lymphocytes in the processing of autoantigens. Cell Mol Life Sci 57:561–568

    CAS  PubMed  Google Scholar 

  9. Hardin JA (1986) The lupus autoantigens and the pathogenesis of systemic lupus erythematosus. Arthritis Rheum 29:457–460

    CAS  PubMed  Google Scholar 

  10. Illei GG, Tackey E, Lapteva L, Lipsky PE (2004) Biomarkers in systemic lupus erythematosus. I. General overview of biomarkers and their applicability. Arthritis Rheum 50:1709–1720

    CAS  PubMed  Google Scholar 

  11. Illei GG, Tackey E, Lapteva L, Lipsky PE (2004) Biomarkers in systemic lupus erythematosus: II. Markers of disease activity. Arthritis Rheum 50:2048–2065

    CAS  PubMed  Google Scholar 

  12. Smolen JS, Aletaha D, Koeller M, Weisman MH, Emery P (2004) New therapies for the treatment of rheumatoid arthritis. Lancet 370:1861–1874

    Google Scholar 

  13. Arend WP (2001) Physiology of cytokine pathways in rheumatoid arthritis. Arthritis Rheum 45:101–106

    CAS  PubMed  Google Scholar 

  14. Ubbink JB, Vermaak WJ, van der Merwe A, Becker PJ (1993) Vitamin B12, vitamin B6 and folate nutritional status in men with hyperhomocysteinemia. Am J Clin Nutr 57:47–53

    CAS  PubMed  Google Scholar 

  15. Hultberg B, Andersson A, Sterner G (1993) Plasma homocysteine in renal failure. Clin Nephrol 40:230–234

    CAS  PubMed  Google Scholar 

  16. Haagsma CJ, Blom HJ, van Riel PL, van’t Hof MA, Giesendorf BA, van Oppenraaij-Emmerzaal D, van de Putte LB (1999) Influence of sulphasalazine, methotrexate, and the combination of both on plasma homocysteine concentrations in patients with rheumatoid arthritis. Ann Rheum Dis 58:79–84

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hernanz A, Plaza A, Martín-Mola E, De Miguel E (1999) Increased plasma levels of homocysteine and other thiol compounds in rheumatoid arthritis women. Clin Biochem 32:65–70

    CAS  PubMed  Google Scholar 

  18. Lentz SR (2005) Mechanisms of homocysteine induced atherothrombosis. J Thromb Haemost 3:1646–1654

    CAS  PubMed  Google Scholar 

  19. De Leeuw K, Kallenberg C, Bijl M (2005) Accelerated atherosclerosis in patients with systemic autoimmune diseases. Ann N Y Acad Sci 1051:362–371

    PubMed  Google Scholar 

  20. Li T, Chen Y, Li J, Yang X, Zhang H, Qin X, Hu Y, Mo Z (2015) Serum homocysteine concentration is significantly associated with inflammatory/immune factors. PLoS One 10(9):e0138099

    PubMed  PubMed Central  Google Scholar 

  21. Schroecksnadel K, Frick B, Wirleitner B, Winkler C, Schennach H, Fuchs D (2004) Moderate hyperhomocysteinemia and immune activation. Curr Pharm Biotechnol 5:107–118

    CAS  PubMed  Google Scholar 

  22. Lazzerini PE, Capecchi PL, Selvi E, Lorenzini S, Bisogno S, Galeazzi M, Laghi Pasini F (2007) Hyperhomocysteinemia, inflammation, and autoimmunity. Autoimmun Rev 6:5039

    Google Scholar 

  23. Poddar R, Sivasubramanian N, DiBello PM, Robinson K, Jacobsen DW (2001) DWHomocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells: implications for vascular disease. Circulation 103:2717–2723

    CAS  PubMed  Google Scholar 

  24. Dai J, Wang X (2007) Immunoregulatory effects of homocysteine on cardiovascular diseases. Sheng Li Xue Bao 59(5):585–592

    CAS  PubMed  Google Scholar 

  25. Koga T, Claycombe K, Meydani M (2002) Homocysteine increases monocyte and T-cell adhesion to human aortic endothelial cells. Atherosclerosis 161:365–374

    CAS  PubMed  Google Scholar 

  26. Wang G, Woo CW, Sung FL, Siow YL, O K (2002) Increased monocyte adhesion to aortic endothelium in rats with hyperhomocysteinemia: role of chemokine and adhesion molecules. Arterioscler Thromb Vasc Biol 22:1777–1783

    CAS  PubMed  Google Scholar 

  27. Tso TK, Huang WN, Huang HY, Chang CK (2006) Relationship of plasma interleukin-18 concentrations to traditional and non-traditional cardiovascular factors in patients with systemic lupus erythematosus. Rheumatology 45:1148–1153

    CAS  PubMed  Google Scholar 

  28. Steed MM, Tyagi SC (2011) Mechanisms of cardiovascular remodeling in hyperhomocysteinemia. Antioxid Redox Sig 15:1927–1943

    CAS  Google Scholar 

  29. Sabio JM, Vargas-Hitos JA, Martinez-Bordonado J, Navarrete-Navarrete N, Díaz-Chamorro A, Olvera-Porcel C, Zamora M, Jiménez-Alonso J (2015) Association between low 25- hydroxyvitamin D, insulin resistance and arterial stiffness in nondiabetic women with systemic. Lupus 24:155–163

    CAS  PubMed  Google Scholar 

  30. Tso TK, Huang HY, Chang CK, Huang WN (2006) A positive correlation between homocysteine and brachial-ankle pulse wave velocity in patients with systemic lupus erythematosus. Clin Rheumatol 25:285–290

    PubMed  Google Scholar 

  31. Xu XY, Zhou WH, Xiao CS, Li XF, Wang LY (2005) A clinical study of hyperhomocysteine in rheumatological diseases. Zhonghua Nei Ke Za Zhi 44:111–114

    CAS  PubMed  Google Scholar 

  32. Oh D, Kim SH, Kang MS, Kim NK, Chang NS, Na BW, Chung SY, Park S, Cho CS (2003) Acquired activated protein C resistance, high tissue factor expression, and hyper-homocysteinemia in systemic lupus erythematosus. Am J Hemat 72:103–108

    CAS  PubMed  Google Scholar 

  33. Martínez-Berriotxoa A, Ruiz-Irastorza G, Egurbide Arberas MV, Rueda Gutiérrez M, Aguirre Errasti C (2003) Plasma homocysteine levels in systemic lupus erythematosus. Med Clin (Barc) 120:681–685

    Google Scholar 

  34. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Meth 14:135

    Google Scholar 

  35. Mohannad N, Tayel M, Megallaa MH (2017) Homocysteine: any role in peripheral vascular disease in systemic lupus erythematosus (SLE) patients. Ann of the Rheum Dis 76(Suppl 2):310

    Google Scholar 

  36. Gustafsson JT, Herlitz Lindberg M, Gunnarsson I, Pettersson S, Elvin K, Ohrvik J, Larsson A, Jensen-Urstad K, Svenungsson E (2017) Excess atherosclerosis in systemic lupus erythematosus, ÐA matter of renal involvement: case-control study of 281 SLE patients and 281 individually matched population controls. PLoS One 12:e0174572

    PubMed  PubMed Central  Google Scholar 

  37. Bonciani D, Antiga E, Bonciolini V, Verdelli A, Del Bianco E, Volpi W, Caproni M (2016) Homocysteine serum levels are increased and correlate with disease severity in patients with lupus erythematosus. Clinand Expt Rheum 34:76–81

    Google Scholar 

  38. Khairy N, Ezzat Y, Naeem N, Radwa Taha R, Wesam R (2017) Atherosclerosis biomarkers in female systemic lupus erythematosus patients with and without cardiovascular diseases. Egypt Rheum 39:7–12

    Google Scholar 

  39. Sabio JM, Vargas-Hitos JA, Martinez-Bordonado J, Navarrete-Navarrete N, Díaz-Chamorro A, Olvera-Porcel C, Zamora-Pasadas M, Jiménez-Alonso J (2014) Relationship between homocysteine levels and hypertension in systemic lupus erythematosus. Arthritis Care Res 66:1528–1535

    CAS  Google Scholar 

  40. Lertratanakul A, Wu P, Dyer AR, Kondos G, Edmundowicz D, Carr J, Ramsey-Goldman R (2014) Risk factors in the progression of subclinical atherosclerosis in women with systemic lupus erythematosus. Arthritis Care Res 66:1177–1185

    CAS  Google Scholar 

  41. Navarro M, Pais F, López W, Cabello R, Salazar M, Zerpa A (2014) Relationship of homocysteine with cardiovascular risk factors in patients with systemic lupus erythematosus. Comm Healthy 12:51–61

    Google Scholar 

  42. Huang X, Su G, Wang Z, Shangguan S, Cui X, Zhu J, Kang M, Li S, Zhang T, Wu F, Wang L (2014) Hypomethylation of long interspersed nucleotide element-1 in peripheral mononuclear cells of juvenile systemic lupus erythematosus patients in China. Int J Rheum Dis 17:280–290

    CAS  PubMed  Google Scholar 

  43. Ortiz TT, Terreri MT, Caetano M, Souza FS, D’Almeida V, Sarni RO, Hilário MO (2013) Dyslipidemia in pediatric systemic lupus erythematosus: the relationship with disease activity and plasma homocysteine and cysteine concentrations. Ann Nutr Metab 63:77–82

    CAS  PubMed  Google Scholar 

  44. Rupasree Y, Naushad SM, Rajasekhar L, Kutala VK (2013) Association of genetic variants of xenobiotic metabolic pathway with systemic lupus erythematosus. Indian J Biochem Biophys 50:447–452

    CAS  PubMed  Google Scholar 

  45. Rho YH, Solus J, Raggi P, Oeser A, Gebretsadik T, Shintani A, Stein CM (2011) Macrophage activation and coronary atherosclerosis in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Care Res 63:535–541

    CAS  Google Scholar 

  46. Kim NR, Lee CH, Park JS, Lee CW (2009) Pulse wave velocity in young premenopausal women with systemic lupus erythematosus. Korean J Med 76:60–64

    Google Scholar 

  47. Rhew EY, Lee C, Eksarko P, Dyer AR, Tily H, Spies S, Pope RM, Ramsey-Goldman R (2008) Homocysteine, bone mineral density, and fracture risk over 2 years of followup in women with and without systemic lupus erythematosus. J Rheumatol 35:230–236

    PubMed  Google Scholar 

  48. Summers CM, Cucchiara AJ, Nackos E, Hammons AL, Mohr E, Whitehead AS, Von Feldt JM (2008) Functional polymorphisms of folate-metabolizing enzymes in relation to homocysteine concentrations in systemic lupus erythematosus. J Rheumatol 35:2179–2186

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Padjas A, Undas A, Swadzba J, Musiał J (2007) Antibodies to N-homocysteinylated albumin in patients with systemic lupus erythematosus. Pol Arch Med Wewn 117:80–85

    Google Scholar 

  50. Brown KS, Nackos E, Morthala S, Jensen LE, Whitehead AS, Von Feldt JM (2007) Monocyte chemoattractant protein-1: plasma concentrations and A(–2518)G promoter polymorphism of its gene in systemic lupus erythematosus. J Rheumatol 34:740–746

    CAS  PubMed  Google Scholar 

  51. Karadag O, Calguneri M, Atalar E, Yavuz B, Akdogan A, Kalyoncu U, Bilgen SA, Ozer N, Ertenli AI, Ovunc K, Kiraz S (2007) Novel cardiovascular risk factors and cardiac event predictors in female inactive systemic lupus erythematosus patients. Clin Rheum 26:695–699

    Google Scholar 

  52. Chung CP, Avalos I, Oeser A, Gebretsadik T, Shintani A, Raggi P, Stein CM (2007) High prevalence of the metabolic syndrome in patients with systemic lupus erythematosus: association with disease characteristics and cardiovascular risk factors. Ann Rheum Dis 66:208–214

    CAS  PubMed  Google Scholar 

  53. Von Feldt JM, Scalzi LV, Cucchiara AJ, Morthala S, Kealey C, Flagg SD, Genin A, Van Dyke AL, Nackos E, Chander A, Gehrie E, Cron RQ, Whitehead AS (2006) Homocysteine levels, and disease duration independently correlate with coronary artery calcification in patients with systemic lupus erythematosus. Arthritis Rheum 54:2220–2227

    Google Scholar 

  54. Lee AB, Godfrey T, Rowley TK, Karschimkus CS, Dragicevic G, Romas E, Clemens L, Wilson AM, Nikpour M, Prior DL, Best JD, Jenkins AJ (2006) Traditional risk factor assessment does not capture the extent of cardiovascular risk in systemic lupus erythematosus. Int Med J 36:237–243

    CAS  Google Scholar 

  55. Afeltra A, Vadacca M, Conti L, Galluzzo S, Mitterhofer AP, Ferri GM, Del Porto F, Caccavo D, Gandolfo GM, Amoroso A (2005) Thrombosis in systemic lupus erythematosus: congenital and acquired risk factors. Arthritis Care Res 53(3):452–459

    Google Scholar 

  56. Bruce IN, Urowitz MB, Gladman DD, Ibanez D, Steiner G (2003) Risk factors for coronary heart disease in women with systemic lupus erythematosus. Arthritis Rheum 48:3159–3167

    PubMed  Google Scholar 

  57. Refai TMK, Al-Salem IH, Nkansa-Dwamena D, Al-Salem MH (2002) Hyperhomocysteinaemia and risk of thrombosis in systemic lupus erythematosus patients. Clin Rheum 21:457–461

    CAS  Google Scholar 

  58. Cheng TT, Chiu CK (2002) Elevated homocysteine levels in patients with Raynaud’s phenomenon secondary to systemic lupus erythematosus. Clin Rheum 21:251–254

    Google Scholar 

  59. Svenungsson E, Jensen-Urstad K, Heimbürger M, Silveira A, Hamsten A, de Faire U, Witztum JL, Frostegård J (2001) Risk factors for cardiovascular disease in systemic lupus erythematosus. Circulation 104:1887–1893

    CAS  PubMed  Google Scholar 

  60. Jensen-Urstad K, Svenungsson E, de Faire U, Silveira A, Witztum JL, Hamsten A, Frostegård J (2002) Cardiac valvular abnormalities are frequent in systemic lupus erythematosus patients with manifest arterial disease. Lupus 11:744–752

    CAS  PubMed  Google Scholar 

  61. Fijnheer R, Roest M, Haas FJ, De Groot PG, Derksen RH (1998) Homocysteine, methylenetetrahydrofolate reductase polymorphism, antiphospholipid antibodies, and thromboembolic events in systemic lupus erythematosus: a retrospective cohort study. J Rheumatol 25:1737–1742

    CAS  PubMed  Google Scholar 

  62. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analysis: the PRISMA statement. PLoS Med 6:e1000097

    PubMed  PubMed Central  Google Scholar 

  63. Wells G, Shea B, O’Connell D (2011) The Newcastle-Ottawa Scale (NOS) for assessing the quality of case-control studies in meta-analysis. Eur J Epidemiol 25:603–605

    Google Scholar 

  64. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analysis. BMJ 327:557–560

    PubMed  PubMed Central  Google Scholar 

  65. Deeks J, Higgins J, Altman D (2011) Chapter 9: Analysing Data and Undertaking Meta-analyses: Cochrane Handbook for Systematic Reviews of Interventions Version 5.1. 0 [updated March 2011]. https://handbook-5-1.cochrane.org/chapter_9/9_analysing_data_and_undertaking_meta_analyses.htm. Accessed 17 Jan 2019

  66. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Welch GN, Loscalzo J (1998) Homocysteine and atherothrombosis. N Engl J Med 338:1042–1050

    CAS  PubMed  Google Scholar 

  68. Sen U, Mishra PK, Tyagi N, Tyagi SC (2010) Homocysteine to hydrogen sulphide or hypertension. Cell Biochem Biophys 57:49–58

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Samouillan V, Lamy E, Dandurand J, Foucault-Bertaud A, Chareyre C, Lacabanne C, Charpiot P (2010) Changes in the physical structure and chain dynamics of elastin network in homocysteinecultured arteries. J Biomed Mater Res 93:696–703

    Google Scholar 

  70. Tsai JC, Perrella MA, Yoshizumi M, Hsieh CM, Haber E, Schlegel R, Lee ME (1994) Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci U S A 91:6369–6373

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Seligman VA, Suarez C, Lum R, Inda SE, Lin D, Li H, Olson JL, Seldin MF, Criswell LA (2001) The Fcγ receptor IIIA-158F allele is a major risk factor for the development of lupus nephritis among Caucasians but not non-Caucasians. Arthritis Rheum 44:618–625

    CAS  PubMed  Google Scholar 

  72. Ahmed S, Ihara K, Kanemitsu S (2001) Association of CTLA-4 but not CD28 gene polymorphisms with systemic lupus erythematosus in the Japanese population. Rheum (Oxford) 40:662–667

    CAS  Google Scholar 

  73. Hoi AY, Morand EF, Leech M (2003) Is macrophage migration inhibitory factor a therapeutic target in systemic lupus erythematosus. Immunol Cell Biol 81:367–373

    CAS  PubMed  Google Scholar 

  74. Borchers AT, Naguwa SW, Shoenfeld Y, Gershwin ME (2010) The geoepidemiology of systemic lupus erythematosus. Autoimmun Rev 9:A277–A287

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was successfully done by the help of a grant from the National Natural Science Foundation of China. The grant numbers are as follows: 81573222 and 81473058.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Feng Pan or Dong-Qing Ye.

Ethics declarations

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Funnel plots of the included studies (PNG 463 kb)

High Resolution (TIF 450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sam, N.B., Zhang, Q., Li, BZ. et al. Serum/plasma homocysteine levels in patients with systemic lupus erythematosus: a systematic review and meta-analysis. Clin Rheumatol 39, 1725–1736 (2020). https://doi.org/10.1007/s10067-020-04985-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-020-04985-w

Keywords

Navigation