Skip to main content

Advertisement

Log in

Effects of miR-150-5p on the growth and SOCS1 expression of rheumatoid arthritis synovial fibroblasts

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

A Correction to this article was published on 16 January 2020

This article has been updated

Abstract

Objective

miR-150-5p has been implicated in the regulation and onset of immune diseases. We investigated the effects of miR-150-5p on the functions of RA synovial fibroblasts (RASFs).

Method

The binding site between suppressor of cytokine signaling 1 (SOCS1) and miR-150-5p was analyzed using European Bioinformatics Institute database, and the 3′ UTR of SOCS1 mRNA, including the binding site, was amplified and ligated to the 3′-end of LUC2 gene in the pmirGL0 dual-luciferase vector. The pmirGL0 vector and corresponding mimics were subsequently co-transfected into 293T cells to compare the relative fluorescence intensity of LUC2 between the miR-150-5p mimics and the negative control (NC) mimics groups. Further, the RASF cell line MH7A was transfected with miR-150-5p or NC mimics and subjected to flow cytometric analysis, cell counting kit-8 assay, western blot analysis, qPCR, and enzyme-linked immunosorbent (ELISA) assay 48 h after transfection.

Results

miR-150-5p mimics resulted in a lower cell apoptotic rate and proportion of cells in the S phase. Using a dual-luciferase reporter gene assay, we then found that SOCS1 is a potential target of miR-150-5p. Compared with NC mimics, miR-150-5p mimics significantly decreased the protein and mRNA expression levels of SOCS1. ELISA assay showed that miR-150-5p mimics increased interleukin-6 level in the cell culture medium but did not influence tumor necrosis factor-alpha levels.

Conclusions

Overall, the growth-promoting effect of miR-150-5p on MH7A cells may be attributed to the miR-150-5p-induced degradation of SOCS1 mRNA, suggesting a potential therapeutic target for RA.

Key Points

SOCS1 is a potential target of miR-150-5p.

miR-150-5p promoted the growth of RASF cell line MH7A.

miR-150-5p increased the secretion of IL-6 but did not significantly affect TNF-α levels in MH7A cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

  • 16 January 2020

    The first name of the co-author of the above article was presented incorrect in the published version. The author name “<Emphasis Type="Bold">Miangliang Qiu</Emphasis>” should read “<Emphasis Type="Bold">Mingliang Qiu</Emphasis>” as mentioned above.

References

  1. Singh JA, Saag KG, Bridges SL, Akl EA, Bannuru RR, Sullivan MC, Vaysbrot E, McNaughton C, Osani M, Shmerling RH, Curtis JR, Furst DE, Parks D, Kavanaugh A, O’Dell J, King C, Leong A, Matteson EL, Schousboe JT, Drevlow B, Ginsberg S, Grober J, St.Clair EW, Tindall E, Miller AS, McAlindon T (2016) 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res 68:1–25

    Google Scholar 

  2. Lau CS, Chia F, Harrison A, Hsieh TY, Jain R, Jung SM, Kishimoto M, Kumar A, Leong KP, Li Z, Lichauco JJ, Louthrenoo W, Luo SF, Nash P, Ng CT, Park SH, Suryana BP, Suwannalai P, Wijaya LK, Yamamoto K, Yang Y, Yeap SS (2015) APLAR rheumatoid arthritis treatment recommendations. Int J Rheum Dis 18:685–713

    PubMed  Google Scholar 

  3. Smolen JS, Aletaha D, McInnes IB (2016) Rheumatoid arthritis. Lancet (London, England) 388:2023–2038

    CAS  Google Scholar 

  4. Scott DL, Wolfe F, Huizinga TW (2010) Rheumatoid arthritis. Lancet (London, England) 376:1094–1108

    Google Scholar 

  5. Sonkoly E, Pivarcsi A (2009) Advances in microRNAs: implications for immunity and inflammatory diseases. J Cell Mol Med 13:24–38

    CAS  PubMed  Google Scholar 

  6. Chen Z, Wang H, Xia Y, Yan F, Lu Y (2018) Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol 201:2472–2482

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou H, Hasni SA, Perez P, Tandon M, Jang SI, Zheng C, Kopp JB, Austin H 3rd, Balow JE, Alevizos I, Illei GG (2013) miR-150 promotes renal fibrosis in lupus nephritis by downregulating SOCS1. J Am Soc Nephrol 24:1073–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ, Gonda TJ, Alexander WS, Metcalf D, Nicola NA, Hilton DJ (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387:917–921

    CAS  PubMed  Google Scholar 

  9. Hilton DJ, Richardson RT, Alexander WS, Viney EM, Willson TA, Sprigg NS, Starr R, Nicholson SE, Metcalf D, Nicola NA (1998) Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci U S A 95:114–119

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Isomaki P, Alanara T, Isohanni P, Lagerstedt A, Korpela M, Moilanen T, Visakorpi T, Silvennoinen O (2007) The expression of SOCS is altered in rheumatoid arthritis. Rheumatology (Oxford) 46:1538–1546

    CAS  Google Scholar 

  11. de Hooge AS, van de Loo FA, Koenders MI, Bennink MB, Arntz OJ, Kolbe T, van den Berg WB (2004) Local activation of STAT-1 and STAT-3 in the inflamed synovium during zymosan-induced arthritis: exacerbation of joint inflammation in STAT-1 gene-knockout mice. Arthritis Rheum 50:2014–2023

    PubMed  Google Scholar 

  12. Mor A, Abramson SB, Pillinger MH (2005) The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammation and joint destruction. Clin Immunol 115:118–128

    CAS  PubMed  Google Scholar 

  13. Chen Z, Wang H, Xia Y, Yan F, Lu Y (2018) RA. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol 201:2472–2482

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Niimoto T, Nakasa T, Ishikawa M, Okuhara A, Izumi B, Deie M, Suzuki O, Adachi N, Ochi M (2010) MicroRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients. BMC Musculoskelet Disord 11:209

    PubMed  PubMed Central  Google Scholar 

  15. Churov AV, Oleinik EK, Knip M (2015) MicroRNAs in rheumatoid arthritis: altered expression and diagnostic potential. Autoimmun Rev 14:1029–1037

    CAS  PubMed  Google Scholar 

  16. Ebrahimiyan H, Rezaei N, Vojdanian M, Aslani S, Jamshidi A, Mahmoudi M (2019) microRNA involvement in the regulation of survivin in peripheral blood mononuclear cells from rheumatoid arthritis patients. Int J Rheum Dis 22:1107–1114

    CAS  PubMed  Google Scholar 

  17. Su YJ, Tsai NW, Kung CT, Wang HC, Lin WC, Huang CC, Chang YT, Su CM, Chiang YF, Cheng BC, Lin YJ, Lu CH (2018) Investigation of MicroRNA in mitochondrial apoptotic pathway in systemic lupus erythematosus. Biomed Res Int 2018:9026357

    PubMed  PubMed Central  Google Scholar 

  18. Abulaban KM, Fall N, Nunna R, Ying J, Devarajan P, Grom A, Bennett M, Ardoin SP, Brunner HI (2016) Relationship of cell-free urine MicroRNA with lupus nephritis in children. Pediatr Rheumatol Online J 14:4

    PubMed  PubMed Central  Google Scholar 

  19. Honda N, Jinnin M, Kira-Etoh T, Makino K, Kajihara I, Makino T, Fukushima S, Inoue Y, Okamoto Y, Hasegawa M, Fujimoto M, Ihn H (2013) miR-150 down-regulation contributes to the constitutive type I collagen overexpression in scleroderma dermal fibroblasts via the induction of integrin beta3. Am J Pathol 182:206–216

    CAS  PubMed  Google Scholar 

  20. Perez-Sanchez C, Font-Ugalde P, Ruiz-Limon P, Lopez-Pedrera C, Castro-Villegas MC, Abalos-Aguilera MC, Barbarroja N, Arias-de la Rosa I, Lopez-Montilla MD, Escudero-Contreras A, Lopez-Medina C, Collantes-Estevez E, Jimenez-Gomez Y (2018) Circulating microRNAs as potential biomarkers of disease activity and structural damage in ankylosing spondylitis patients. Hum Mol Genet 27:875–890

    CAS  PubMed  Google Scholar 

  21. Huang XL, Zhang L, Li JP, Wang YJ, Duan Y, Wang J (2015) MicroRNA-150: a potential regulator in pathogens infection and autoimmune diseases. Autoimmunity 48:503–510

    CAS  PubMed  Google Scholar 

  22. Zhou B, Wang S, Mayr C, Bartel DP, Lodish HF (2007) miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci U S A 104:7080–7085

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bezman NA, Chakraborty T, Bender T, Lanier LL (2011) miR-150 regulates the development of NK and iNKT cells. J Exp Med 208:2717–2731

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tsitsiou E, Lindsay MA (2009) microRNAs and the immune response. Curr Opin Pharmacol 9:514–520

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bian Z, Li L, Cui J, Zhang H, Liu Y, Zhang CY, Zen K (2011) Role of miR-150-targeting c-Myb in colonic epithelial disruption during dextran sulphate sodium-induced murine experimental colitis and human ulcerative colitis. J Pathol 225:544–553

    CAS  PubMed  Google Scholar 

  26. Ghisi M, Corradin A, Basso K, Frasson C, Serafin V, Mukherjee S, Mussolin L, Ruggero K, Bonanno L, Guffanti A, De Bellis G, Gerosa G, Stellin G, D’Agostino DM, Basso G, Bronte V, Indraccolo S, Amadori A, Zanovello P (2011) Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood 117:7053–7062

    CAS  PubMed  Google Scholar 

  27. Wu Q, Jin H, Yang Z, Luo G, Lu Y, Li K, Ren G, Su T, Pan Y, Feng B, Xue Z, Wang X, Fan D (2010) MiR-150 promotes gastric cancer proliferation by negatively regulating the pro-apoptotic gene EGR2. Biochem Biophys Res Commun 392:340–345

    CAS  PubMed  Google Scholar 

  28. Laragione T, Gulko PS (2010) mTOR regulates the invasive properties of synovial fibroblasts in rheumatoid arthritis. Mol Med 16:352–358

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin JT, Stein EA, Wong MT, Kalpathy KJ, Su LL, Utz PJ, Robinson WH, Fathman CG (2012) Differential mTOR and ERK pathway utilization by effector CD4 T cells suggests combinatorial drug therapy of arthritis. Clin Immunol 142:127–138

    CAS  PubMed  Google Scholar 

  30. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283

    CAS  PubMed  Google Scholar 

  31. Malemud CJ (2018) The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther Adv Musculoskelet Dis 10:117–127

    CAS  PubMed  PubMed Central  Google Scholar 

  32. McGarry T, Orr C, Wade S, Biniecka M, Wade S, Gallagher L, Low C, Veale DJ, Fearon U (2018) JAK/STAT blockade alters synovial bioenergetics, mitochondrial function, and proinflammatory mediators in rheumatoid arthritis. Arthritis Rheumatol (Hoboken, NJ) 70:1959–1970

    CAS  Google Scholar 

  33. Mateen S, Zafar A, Moin S, Khan AQ, Zubair S (2016) Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta 455:161–171

    CAS  PubMed  Google Scholar 

  34. Asquith DL, McInnes IB (2007) Emerging cytokine targets in rheumatoid arthritis. Curr Opin Rheumatol 19:246–251

    CAS  PubMed  Google Scholar 

  35. Malemud CJ (2017) Negative regulators of JAK/STAT signaling in rheumatoid arthritis and osteoarthritis. Int J Mol Sci 18

  36. Aittomaki S, Pesu M (2014) Therapeutic targeting of the Jak/STAT pathway. Basic Clin Pharmacol Toxicol 114:18–23

    PubMed  Google Scholar 

  37. Aaronson DS, Horvath CM (2002) A road map for those who don’t know JAK-STAT. Science 296:1653–1655

    CAS  PubMed  Google Scholar 

  38. Xiong H, Du W, Zhang YJ, Hong J, Su WY, Tang JT, Wang YC, Lu R, Fang JY (2012) Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells. Mol Carcinog 51:174–184

    CAS  PubMed  Google Scholar 

  39. Tamiya T, Kashiwagi I, Takahashi R, Yasukawa H, Yoshimura A (2011) Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways: regulation of T-cell inflammation by SOCS1 and SOCS3. Arterioscler Thromb Vasc Biol 31:980–985

    CAS  PubMed  Google Scholar 

  40. Chinen T, Komai K, Muto G, Morita R, Inoue N, Yoshida H, Sekiya T, Yoshida R, Nakamura K, Takayanagi R, Yoshimura A (2011) Prostaglandin E2 and SOCS1 have a role in intestinal immune tolerance. Nat Commun 2:190

    PubMed  PubMed Central  Google Scholar 

  41. Mori T, Miyamoto T, Yoshida H, Asakawa M, Kawasumi M, Kobayashi T, Morioka H, Chiba K, Toyama Y, Yoshimura A (2011) IL-1beta and TNFalpha-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int Immunol 23:701–712

    CAS  PubMed  Google Scholar 

  42. Hammond SM (2015) An overview of microRNAs. Adv Drug Deliv Rev 87:3–14

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li YT, Chen SY, Wang CR, Liu MF, Lin CC, Jou IM, Shiau AL, Wu CL (2012) Brief report: amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis Rheum 64:3240–3245

    CAS  PubMed  Google Scholar 

  44. Tao Y, Wang Z, Wang L, Shi J, Guo X, Zhou W, Wu X, Liu Y, Zhang W, Yang H, Shi Q, Xu Y, Geng D (2017) Downregulation of miR-106b attenuates inflammatory responses and joint damage in collagen-induced arthritis. Rheumatology (Oxford) 56:1804–1813

    CAS  Google Scholar 

  45. Dang Q, Yang F, Lei H, Liu X, Yan M, Huang H, Fan X, Li Y (2017) Inhibition of microRNA-34a ameliorates murine collagen-induced arthritis. Exp Ther Med 14:1633–1639

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Peng JS, Chen SY, Wu CL, Chong HE, Ding YC, Shiau AL, Wang CR (2016) Amelioration of experimental autoimmune arthritis through targeting of synovial fibroblasts by Intraarticular delivery of microRNAs 140-3p and 140-5p. Arthritis Rheumatol (Hoboken, NJ) 68:370–381

    CAS  Google Scholar 

  47. Nakasa T, Shibuya H, Nagata Y, Niimoto T, Ochi M (2011) The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum 63:1582–1590

    CAS  PubMed  Google Scholar 

  48. Wu J, Fan W, Ma L, Geng X (2018) miR-708-5p promotes fibroblast-like synoviocytes’ cell apoptosis and ameliorates rheumatoid arthritis by the inhibition of Wnt3a/beta-catenin pathway. Drug Des Dev Ther 12:3439–3447

    CAS  Google Scholar 

Download references

Funding

This study was partially supported by a grant from the project of National Natural Science Foundation of China (NO.21605075) and the project of Natural Science Foundation of Jiangxi Province (NO.20181BAB203020, NO.20192BBGL70024). The funder had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinwang Duan or Weidong Xu.

Ethics declarations

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The first name of the co-author of the above article was presented incorrect in the published version. The author name “Miangliang Qiu” should read “Mingliang Qiu” and is now presented correctly in this article.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, M., Mo, L., Li, J. et al. Effects of miR-150-5p on the growth and SOCS1 expression of rheumatoid arthritis synovial fibroblasts. Clin Rheumatol 39, 909–917 (2020). https://doi.org/10.1007/s10067-019-04894-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-019-04894-7

Keywords

Navigation