Skip to main content

Advertisement

Log in

The expression of GAS5, THRIL, and RMRP lncRNAs is increased in T cells of patients with rheumatoid arthritis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objective

Long non-coding RNAs (lncRNAs) comprise a large and diverse group of non-coding RNAs (ncRNAs) with important regulatory roles in various biological processes, including the immune system regulation. Rheumatoid arthritis (RA) as an autoimmune disease initiates inflammation in the synovial joints. T cells infiltrating into the synovial membrane have an important role in the pathogenesis of RA. The aim of the current investigation was to analyze the expression of four lncRNAs in the T cells from RA patients and healthy controls.

Methods

In the current study, we investigated the expression of GAS5, RMRP, IFNϒ-AS1, and THRIL lncRNAs in circulating T cells from 20 patients with RA and 18 healthy matched controls by quantitative real-time PCR. T cell isolation was accomplished using the MAC method. We also analyzed the correlation between lncRNA expression and clinical parameters. Also, the mRNA expression levels of IL-17 and TNF-α and the association between lncRNAs and these cytokines were examined.

Results

The results indicate that T cells of RA patients display increased levels of GAS5 (3.31-fold, p = 0.007), RMRP (2.43-fold, p = 0.02), and THRIL (2.14-fold, p = 0.03) lncRNAs compared with those of controls. Furthermore, a positive correlation was found between RMRP expression and disease duration in RA. Receiver operating characteristic (ROC) curve of GAS5, RMRP, and THRIL has a discriminative value in comparing RA patients and controls.

Conclusion

The results suggest lncRNAs may be involved in T cell dysfunction in RA. Further studies are required to see whether these lncRNAs have an effect on dysregulation of immune responses in RA disease.

Key Points

70% of non-coding sequences in the human genome are transcribed to RNA.

A growing body of evidence shows the importance of lncRNAs in innate and adaptive immune cell differentiation and functions.

Important recent works suggest a key role of immune cell lncRNAs in autoimmune processes and diseases including RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Klareskog L, Catrina AI, Paget S (2009) Rheumatoid arthritis. Lancet 373(9664):659–672. https://doi.org/10.1016/s0140-6736(09)60008-8

    Article  CAS  PubMed  Google Scholar 

  2. Kourilovitch M, Galarza-Maldonado C, Ortiz-Prado E (2014) Diagnosis and classification of rheumatoid arthritis. J Autoimmun 49:26–30

    Article  Google Scholar 

  3. Khurana R, Berney SM Clinical aspects of rheumatoid arthritis. Pathophysiology 12(3):153–165. https://doi.org/10.1016/j.pathophys.2005.07.009

  4. Croia C, Bursi R, Sutera D, Petrelli F, Alunno A, Puxeddu I (2019) One year in review 2019: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol 37(3):347–357

    PubMed  Google Scholar 

  5. MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J, Aho K, Silman AJ (2000) Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 43(1):30–37

  6. Pratt AG, Isaacs JD, Mattey DL (2009) Current concepts in the pathogenesis of early rheumatoid arthritis. Best Pract Res Clin Rheumatol 23(1):37–48. https://doi.org/10.1016/j.berh.2008.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bennett JC (2008) The role of T lymphocytes in rheumatoid arthritis and other autoimmune diseases. Arthritis Rheum 58(S2):S53–S57. https://doi.org/10.1002/art.23045

    Article  PubMed  Google Scholar 

  8. Cope AP, Schulze-Koops H, Aringer M (2007) The central role of T cells in rheumatoid arthritis. Clin Exp Rheumatol 25(5 Suppl 46):S4–S11

  9. Lubberts E (2015) Role of T lymphocytes in the development of rheumatoid arthritis. Implications for treatment. Curr Pharm Des 21(2):142–146

    Article  CAS  Google Scholar 

  10. Gaffen SL (2009) The role of interleukin-17 in the pathogenesis of rheumatoid arthritis. Curr Rheumatol Rep 11(5):365–370

    Article  CAS  Google Scholar 

  11. Boissier MC, Assier E, Biton J, Denys A, Falgarone G, Bessis N (2009) Regulatory T cells (Treg) in rheumatoid arthritis. Joint Bone Spine 76(1):10–14

    Article  CAS  Google Scholar 

  12. Leipe J, Skapenko A, Lipsky PE, Schulze-Koops H (2005) Regulatory T cells in rheumatoid arthritis. Arthritis Res Ther 7(3):93–93. https://doi.org/10.1186/ar1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gomes AQ, Nolasco S, Soares H (2013) Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci 14(8):16010–16039. https://doi.org/10.3390/ijms140816010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159

    Article  CAS  Google Scholar 

  15. Mowel WK, Kotzin JJ, McCright SJ, Neal VD, Henao-Mejia J (2018) Control of immune cell homeostasis and function by lncRNAs. Trends Immunol 39(1):55–69

    Article  CAS  Google Scholar 

  16. Chen YG, Satpathy AT, Chang HY (2017) Gene regulation in the immune system by long noncoding RNAs. Nat Immunol 18(9):962–972

    Article  CAS  Google Scholar 

  17. Heward JA, Lindsay MA (2014) Long non-coding RNAs in the regulation of the immune response. Trends Immunol 35(9):408–419

    Article  CAS  Google Scholar 

  18. Aune TM, Crooke PS 3rd, Spurlock CF 3rd (2016) Long noncoding RNAs in T lymphocytes. J Leukoc Biol 99(1):31–44

    Article  CAS  Google Scholar 

  19. Wu G-C, Pan H-F, Leng R-X, Wang D-G, Li X-P, Li X-M, Ye D-Q (2015) Emerging role of long noncoding RNAs in autoimmune diseases. Autoimmun Rev 14(9):798–805. https://doi.org/10.1016/j.autrev.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  20. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO III, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JMW, Hobbs K, Huizinga TWJ, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Ménard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS, Vencovský J, Wolfe F, Hawker G (2010) 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62(9):2569–2581. https://doi.org/10.1002/art.27584

    Article  Google Scholar 

  21. Mowel WK, Kotzin JJ, McCright SJ, Neal VD, Henao-Mejia J (2018) Control of immune cell homeostasis and function by lncRNAs. Trends Immunol 39(1):55–69. https://doi.org/10.1016/j.it.2017.08.009

  22. Zhang Y, Cao X (2016) Long noncoding RNAs in innate immunity. Cell Mol Immunol 13(2):138–147. https://doi.org/10.1038/cmi.2015.68

    Article  CAS  PubMed  Google Scholar 

  23. Tang Y, Zhou T, Yu X, Xue Z, Shen N (2017) The role of long non-coding RNAs in rheumatic diseases. Nat Rev Rheumatol 13:657–669. https://doi.org/10.1038/nrrheum.2017.162

    Article  CAS  PubMed  Google Scholar 

  24. Wu GC, Pan HF, Leng RX, Wang DG, Li XP, Li XM, Ye DQ (2015) Emerging role of long noncoding RNAs in autoimmune diseases. Autoimmun Rev 14(9):798–805

    Article  CAS  Google Scholar 

  25. Zhang HJ, Wei QF, Wang SJ, Zhang XY, Geng Q, Cui YH, Wang XH (2017) LncRNA HOTAIR alleviates rheumatoid arthritis by targeting miR-138 and inactivating NF-kappaB pathway. Int Immunopharmacol 50:283–290

    Article  CAS  Google Scholar 

  26. Song J, Kim D, Han J, Kim Y, Lee M, Jin E-J (2015) PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin Exp Med 15(1):121–126. https://doi.org/10.1007/s10238-013-0271-4

    Article  CAS  PubMed  Google Scholar 

  27. Stuhlmuller B, Kunisch E, Franz J, Martinez-Gamboa L, Hernandez MM, Pruss A, Ulbrich N, Erdmann VA, Burmester GR, Kinne RW (2003) Detection of oncofetal h19 RNA in rheumatoid arthritis synovial tissue. Am J Pathol 163(3):901–911

    Article  Google Scholar 

  28. Pickard MR, Williams GT (2015) Molecular and cellular mechanisms of action of tumour suppressor GAS5 LncRNA. Genes 6(3):484–499

    Article  CAS  Google Scholar 

  29. Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9(6):703–719

    Article  CAS  Google Scholar 

  30. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3(107):2000568

    Google Scholar 

  31. Lucafo M, Bravin V, Tommasini A, Martelossi S, Rabach I, Ventura A, Decorti G, De Iudicibus S (2016) Differential expression of GAS5 in rapamycin-induced reversion of glucocorticoid resistance. Clin Exp Pharmacol Physiol 43(6):602–605

    Article  CAS  Google Scholar 

  32. Chang DD, Clayton DA (1987) A novel endoribonuclease cleaves at a priming site of mouse mitochondrial DNA replication. EMBO J 6(2):409–417

    Article  CAS  Google Scholar 

  33. Meng Q, Ren M, Li Y, Song X (2016) LncRNA-RMRP acts as an oncogene in lung cancer. PLoS One 11(12):e0164845

    Article  Google Scholar 

  34. Shao Y, Ye M, Li Q, Sun W, Ye G, Zhang X, Yang Y, Xiao B, Guo J (2016) LncRNA-RMRP promotes carcinogenesis by acting as a miR-206 sponge and is used as a novel biomarker for gastric cancer. Oncotarget 7(25):37812–37824

    Article  Google Scholar 

  35. Huang W, Thomas B, Flynn RA, Gavzy SJ, Wu L, Kim SV, Hall JA, Miraldi ER, Ng CP, Rigo F, Meadows S, Montoya NR, Herrera NG, Domingos AI, Rastinejad F, Myers RM, Fuller-Pace FV, Bonneau R, Chang HY, Acuto O, Littman DR (2015) DDX5 and its associated lncRNA Rmrp modulate Th17 cell effector functions. Nature 528(7583):517–522. https://doi.org/10.1038/nature16193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leipe J, Grunke M, Dechant C, Reindl C, Kerzendorf U, Schulze-Koops H, Skapenko A (2010) Role of Th17 cells in human autoimmune arthritis. Arthritis Rheum 62(10):2876–2885

    Article  CAS  Google Scholar 

  37. Gomez JA, Wapinski OL, Yang YW, Bureau JF, Gopinath S, Monack DM, Chang HY, Brahic M, Kirkegaard K (2013) The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-gamma locus. Cell 152(4):743–754

    Article  CAS  Google Scholar 

  38. Peng H, Liu Y, Tian J, Ma J, Tang X, Rui K, Tian X, Mao C, Lu L, Xu H, Jiang P, Wang S (2015) The long noncoding RNA IFNG-AS1 promotes T helper type 1 cells response in patients with Hashimoto’s thyroiditis. Sci Rep 5:17702. https://doi.org/10.1038/srep17702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo M, Liu X, Meng H, Xu L, Li Y, Li Z, Liu C, Luo Y-B, Hu B, Xue Y, Liu Y, Luo Z, Yang H (2017) IFNA-AS1 regulates CD4+ T cell activation in myasthenia gravis though HLA-DRB1. Clin Immunol 183:121–131. https://doi.org/10.1016/j.clim.2017.08.008

    Article  CAS  PubMed  Google Scholar 

  40. Lee SH, Kwon JY, Kim SY, Jung K, Cho ML (2017) Interferon-gamma regulates inflammatory cell death by targeting necroptosis in experimental autoimmune arthritis. Sci Rep 7(1):017–09767

    Article  Google Scholar 

  41. Li Z, Chao T-C, Chang K-Y, Lin N, Patil VS, Shimizu C, Head SR, Burns JC, Rana TM (2014) The long noncoding RNA THRIL regulates TNFα expression through its interaction with hnRNPL. Proc Natl Acad Sci U S A 111(3):1002–1007. https://doi.org/10.1073/pnas.1313768111

    Article  CAS  PubMed  Google Scholar 

  42. Li Z, Chao TC, Chang KY, Lin N, Patil VS, Shimizu C, Head SR, Burns JC, Rana TM (2014) The long noncoding RNA THRIL regulates TNFalpha expression through its interaction with hnRNPL. Proc Natl Acad Sci U S A 111(3):1002–1007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Farazmand.

Ethics declarations

Disclosure

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moharamoghli, M., Hassan-Zadeh, V., Dolatshahi, E. et al. The expression of GAS5, THRIL, and RMRP lncRNAs is increased in T cells of patients with rheumatoid arthritis. Clin Rheumatol 38, 3073–3080 (2019). https://doi.org/10.1007/s10067-019-04694-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-019-04694-z

Keywords

Navigation