Skip to main content

Advertisement

Log in

Earthquake-triggered landslide susceptibility in Italy by means of Artificial Neural Network

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The use of Artificial Neural Network (ANN) approaches has gained a significant role over the last decade in the field of predicting the distribution of effects triggered by natural forcing, this being particularly relevant for the development of adequate risk mitigation strategies. Among the most critical features of these approaches, there are the accurate geolocation of the available data as well as their numerosity and spatial distribution. The use of an ANN has never been tested at a national scale in Italy, especially in estimating earthquake-triggered landslides susceptibility. The CEDIT catalogue, the most up-to-date national inventory of earthquake-induced ground effects, was adopted to evaluate the efficiency of an ANN to explain the distribution of landslides over the Italian territory. An ex-post evaluation of the ANN-based susceptibility model was also performed, using a sub-dataset of historical data with lower geolocation precision. The ANN training highly performed in terms of spatial prediction, by partitioning the Italian landscape into slope units. The obtained results returned a distribution of potentially unstable slope units with maximum concentrations primarily distributed in the central Apennines and secondarily in the southern and northern Apennines. Moreover, the Alpine sector clearly appeared to be divided into two areas, a western one with relatively low susceptibility to earthquake-triggered landslides and the eastern sector with higher susceptibility. Our work clearly demonstrates that if funds for risk mitigation were allocated only on the basis of rainfall-induced landslide distribution, large areas highly susceptible to earthquake-triggered landslides would be completely ignored by mitigation plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Landslide data can be found in the CEDIT catalogue, available at the link https://gdb.ceri.uniroma1.it/index.php/view/map/?repository=cedit&project=Cedit (as mentioned in the text)

References

  • Alvioli M, Guzzetti F Marchesini I (2020) Parameter-free delineation of slope units and terrain subdivision of Italy. Geomorphology 107124

  • Alvioli M, Marchesini I, Reichenbach P, Rossi M, Ardizzone F, Fiorucci F, Guzzetti F (2016) Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling. Geosci Model Dev 9(11), 3975–3991

  • Amato G, Eisank C, Castro-Camilo D, Lombardo L (2019) Accounting for covariate distributions in slope-unit-based landslide susceptibility models. a case study in the alpine environment. Eng Geol 260, In print

  • Amato G, Palombi L, Raimondi V (2021) Data–driven classification of landslide types at a national scale by using artificial neural networks. Int J Appl Earth Obs Geoinf 104:102549

    Google Scholar 

  • Avolio MV, Di Gregorio S, Lupiano V, Mazzanti P (2013) SCIDDICA-SS 3: a new version of cellular automata model for simulating fast moving landslides. J Supercomput 65(2):682–696

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains. Central Japan Geomorphology 65(1):15–31

    Article  Google Scholar 

  • Basili R, Valensise G, Vannoli P, Burrato P, Fracassi U, Mariano S, Tiberti MM, Boschi E (2008) The Database of Individual Seismogenic Sources (DISS), version 3: summarizing 20 years of research on Italy’s earthquake geology. Tectonophysics 453(1):20–43. Earthquake Geology: Methods and Applications

  • Beven K, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology/Un mod`ele a` base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol Sci J 24(1):43–69

    Article  Google Scholar 

  • Bird JF, Bommer JJ (2004) Earthquake losses due to ground failure. Eng Geol 75(2):147–179

    Article  Google Scholar 

  • Bonham-Carter GF (1989) Weights of evidence modeling: a new approach to mapping mineral potential. Stat Appt Earth Sci 171–183

  • Brenning A (2008) Statistical geocomputing combining R and SAGA: The example of landslide susceptibility analysis with generalized additive models. Hamburger Beitr¨age zur Physischen Geographie und Landschafts¨okologie 19(23–32):410

  • Broeckx J, Vanmaercke M, Duchateau R, Poesen J (2018) A data-based landslide susceptibility map of Africa. Earth Sci Rev 185:102–121

    Article  Google Scholar 

  • Caprari P, Della Seta M, Martino S, Fantini A, Fiorucci M, Priore T (2018) Upgrade of the CEDIT database of earthquake-induced ground effects in Italy. Italian Journal of Engineering Geology and Environment 2:23–39

    Google Scholar 

  • Carminati E, Lustrino M, Cuffaro M, Doglioni C (2010) Tectonics, magmatism and geodynamics of Italy: what we know and what we imagine. J Virtual Explor 36(8):10–3809

    Google Scholar 

  • Carrara A (1988) Drainage and divide networks derived from high-fidelity digital terrain models. In: Quantitative analysis of mineral and energy resources, 581–597. Springer

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Proc Land 16(5):427–445

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In Geographical information systems in assessing natural hazards, pp 135–175. Springer

  • Castro Camilo D, Lombardo L, Mai P, Dou J, Huser R (2017) Handling high predictor dimensionality in slope-unit-based landslide susceptibility models through LASSO-penalized Generalized Linear Model. Environ Model Softw 97:145–156

    Article  Google Scholar 

  • De Reu J, Bourgeois J, Bats M, Zwertvaegher A, Gelorini V, De Smedt P, Chu W, Antrop M, De Maeyer P, Finke P et al (2013) Application of the topographic position index to heterogeneous landscapes. Geomorphology 186:39–49

    Article  Google Scholar 

  • De Veaux RD, Ungar LH (1994) Multicollinearity: a tale of two nonparametric regressions. In: Selecting models from data, pp 393–402. Springer

  • Del Gaudio V, Pierri P, Wasowski J (2003) An approach to time-probabilistic evaluation of seismically induced landslide hazard. Bull Seismol Soc Am 93(2):557–569

    Article  Google Scholar 

  • Del Gaudio V, Wasowski J (2004) Time probabilistic evaluation of seismically induced landslide hazard in Irpinia (Southern Italy). Soil Dyn Earthq Eng 24(12):915–928

    Article  Google Scholar 

  • Delgado J, García-Tortosa FJ, Garrido J, Garrido A, Loffredo A, López-Casado C, Martin-Rojas I, Rodríguez-Peces MJ (2015) Seismically-induced landslides by a low-magnitude earthquake: the Mw 4.7 Ossa De Montiel event (central Spain). Eng Geol 196:280–285

    Article  Google Scholar 

  • DISS-Working-Group (2018) Database of Individual Seismogenic Sources (DISS), version 3.2.1: a compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. http://diss.rm.ingv.it/diss/. Istituto Nazionale di Geofisica e Vulcanologia

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphol 66(1–4):327–343

  • Esposito C, Martino S, Pallone F, Martini G, Romeo R (2016) A methodology for a comprehensive assessment of earthquake-induced landslide hazard, with an application to pilot sites in Central Italy

  • Evans IS (1980) An integrated system of terrain analysis and slope mapping. Zeitschrift fu¨r Geomorphologie. Supplementband Stuttgart 36:274–295

    Google Scholar 

  • Fan X, Scaringi G, Korup O, West AJ, van Westen CJ, Tanyas H, Hovius N, Hales TC, Jibson RW, Allstadt KE et al (2019) Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts. Rev Geophys

  • Finke P, Montanarella L (2001) Basic principals of the manual of procedures (version 1.1) for the georeferenced soil database. Options M´editerran´eennes: S´erie B. Etudes Et Recherches 34:49–65

    Google Scholar 

  • Fortunato C, Martino S, Prestininzi A, Romeo R (2012) New release of the Italian catalogue of earthquake-induced ground failures (CEDIT). Italian Journal of Engineering Geology and Environment 2:63–75

    Google Scholar 

  • Frattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 111(1):62–72

    Article  Google Scholar 

  • Gao Y, Wang S, Guan K, Wolanin A, You L, Ju W, Zhang Y (2020) The ability of sun-induced chlorophyll fluorescence from OCO-2 and MODIS-EVI to monitor spatial variations of soybean and maize yields in the Midwestern USA. Remote Sens 12(7):1111

    Article  Google Scholar 

  • Goetz JN, Guthrie RH, Brenning A (2011) Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphol 129(3–4):376–386

    Article  Google Scholar 

  • Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin. Venezuela Eng Geol 78(1–2):11–27

    Article  Google Scholar 

  • Graser A (2016) Learning Qgis. Packt Publishing Ltd

  • Guisan A, Theurillat J, Zimmermann N (1999) SB Weiss, and AD Weiss, 1999: GLM versus CCA spatial modeling of plant species distribution. Plant Ecol 143:107–122

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study. Central Italy Geomorphology 31(1):181–216

    Article  Google Scholar 

  • Guzzetti F, Galli M, Reichenbach P, Ardizzone F, Cardinali M (2006) Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Nat Hazard 6(1):115–131

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72(1–4):272–299

    Article  Google Scholar 

  • Hassoun MH et al (1995) Fundamentals of artificial neural networks. MIT press

  • Heerdegen RG, Beran MA (1982) Quantifying source areas through land surface curvature and shape. J Hydrol 57(3–4):359–373

    Article  Google Scholar 

  • Herrera G, Mateos RM, García-Davalillo JC, Grandjean G, Poyiadji E, Maftei R, Filipciuc T-C, Auflič MJ, Jež J, Podolszki L et al (2018) Landslide databases in the Geological Surveys of Europe. Landslides 15(2):359–379

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Hsieh S-Y, Lee C-T (2011) Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration. Eng Geol 122(1–2):34–42

    Article  Google Scholar 

  • Huang F, Yin K, Huang J, Gui L, Wang P (2017) Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng Geol 223:11–22

    Article  Google Scholar 

  • Jacek S (1997) Landform characterization with geographic information systems. Photogramm Eng Remote Sens 63(2):183–191

    Google Scholar 

  • Jasiewicz J, Stepinski TF (2013) Geomorphons—a pattern recognition approach to classification and mapping of landforms. Geomorphology 182:147–156

    Article  Google Scholar 

  • Jenness J (2006) Topographic position index (tpi jen. avx) extension for ArcView 3. x, v. a. Jenness Enterprises

  • Jibson RW (2007) Regression models for estimating coseismic landslide displacement. Eng Geol 91(2–4):209–218

  • Jibson RW, Harp EL, Michael JA (2000) A method for producing digital probabilistic seismic landslide hazard maps. Eng Geol 58(3–4):271–289

    Article  Google Scholar 

  • Keefer DK, Wartman J, Ochoa CN, Rodriguez-Marek A, Wieczorek GF (2006) Landslides caused by the M 7.6 Tecom´an, Mexico earthquake of January 21, 2003. Eng Geol 86(2–3):183–197

  • Lima P, Steger S, Glade T, Tilch N, Schwarz L, Kociu A (2017) Landslide susceptibility mapping at national scale: a first attempt for Austria. In: Workshop on World Landslide Forum, pp 943–951

  • Liu Z, Shao J, Xu W, Chen H, Shi C (2014) Comparison on landslide nonlinear displacement analysis and prediction with computational intelligence approaches. Landslides 11(5):889–896

    Article  Google Scholar 

  • Loche M, Alvioli M, Marchesini I, Bakka H, Lombardo L (2022a) Landslide susceptibility maps of Italy: lesson learnt from dealing with multiple landslide types and the uneven spatial distribution of the national inventory. Earth Sci Rev 104125

  • Loche M, Scaringi G, Yunus AP, Catani F, Tanyaş H, Frodella W, Fan X, Lombardo L (2022) Surface temperature controls the pattern of post-earthquake landslide activity. Sci Rep 12(1):988

    Article  Google Scholar 

  • Lombardo L, Bakka H, Tanyas H, van Westen C, Mai PM, Huser R (2019) Geostatistical modeling to capture seismic-shaking patterns from earthquake-induced landslides. J Geophys Res Earth Surf 124(7):1958–1980

    Article  Google Scholar 

  • Lombardo L, Cama M, M¨arker, M. and Rotigliano, E. (2014) A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster. Nat Hazards 74(3):1951–1989

    Article  Google Scholar 

  • Lombardo L, Mai PM (2018) Presenting logistic regression-based landslide susceptibility results. Eng Geol 244:14–24

    Article  Google Scholar 

  • Lombardo L, Opitz T, Ardizzone F, Guzzetti F, Huser R (2020a) Space-time landslide predictive modelling. Earth Sci Rev 103318

  • Lombardo L, Saia S, Schillaci C, Mai PM, Huser R (2018) Modeling soil organic carbon with Quantile Regression: dissecting predictors’ effects on carbon stocks. Geoderma 318:148–159

    Article  Google Scholar 

  • Lombardo L, Tanyas H (2020) Chrono-validation of near-real-time landslide susceptibility models via plug-in statistical simulations. Eng Geol 278:105818

    Article  Google Scholar 

  • Lombardo L, Tanyas H, Nicu IC (2020b) Spatial modeling of multi-hazard threat to cultural heritage sites. Eng Geol 105776

  • Lupiano V, Machado GE, Molina LP, Crisci GM, Di Gregorio S (2018) Simulations of flow-like landslides invading urban areas: a cellular automata approach with SCIDDICA. Nat Comput 17(3):553–568

    Article  Google Scholar 

  • Mantovani M, Bossi G, Marcato G, Schenato L, Tedesco G, Titti G, Pasuto A (2019) New perspectives in landslide displacement detection using sentinel-1 datasets. Remote Sensing 11(18):2135

    Article  Google Scholar 

  • Marjanović M, Kovačević M, Bajat B, Voženílek V (2011) Landslide susceptibility assessment using SVM machine learning algorithm. Eng Geol 123(3):225–234

    Article  Google Scholar 

  • Martino S (2016) Earthquake-induced reactivation of landslides: recent advances and future perspectives. In: Earthquakes and their impact on society, pp 291–322. Springer

  • Martino S, Antonielli B, Bozzano F, Caprari P, Discenza M, Esposito C, Fiorucci M, Iannucci R, Marmoni G, Schilir`o L (2020a) Landslides triggered after the 16 August 2018 M w 5.1 Molise earthquake (Italy) by a combination of intense rainfalls and seismic shaking. Landslides 1–14

  • Martino S, Battaglia S, Delgado J, Esposito C, Martini G, Missori C (2018) Probabilistic approach to provide scenarios of earthquake-induced slope failures (PARSIFAL) applied to the Alcoy Basin (South Spain). Geosci 8(2):57

    Article  Google Scholar 

  • Martino S, Bozzano F, Caporossi P, D’angiò D, Della Seta M, Esposito C, Fantini A, Fiorucci M, Giannini L, Iannucci R et al (2019) Impact of landslides on transportation routes during the 2016–2017 Central Italy seismic sequence. Landslides 16(6):1221–1241

    Article  Google Scholar 

  • Martino S, Bozzano F, Paolo C, Danilo D, Della Seta M, Carlo E, Andrea F, Matteo F, Giannini LM, Roberto I et al (2017) Ground effects triggered by the 24th August 2016, Mw 6.0 Amatrice (italy) earthquake. surveys and inventoring to update the CEDIT catalogue. Geografia Fisica e Dinamica Quaternaria 40(1):77–95

  • Martino S, Caprari P, Fiorucci M, Marmoni G (2020b) The CEDIT Catalogue: from inventorying of earthquake-induced ground effects to analysis of scenario. Mem Descr Carta Geol D’it 107:441–450

    Google Scholar 

  • Martino S, Prestininzi A, Romeo R (2014) Earthquake-induced ground failures in Italy from a reviewed database. Nat Hazard 14(4):799

    Article  Google Scholar 

  • McElroy TS, Jach A (2019) Testing collinearity of vector time series. Economet J 22(2):97–116

    Article  Google Scholar 

  • Ohlmacher GC (2007) Plan curvature and landslide probability in regions dominated by earth flows and earth slides. Eng Geol 91(2):117–134

    Article  Google Scholar 

  • Patel V, Sotiropoulos F (1997) Longitudinal curvature effects in turbulent boundary layers. Prog Aerosp Sci 33(1–2):1–70

    Article  Google Scholar 

  • Petley D (2012) Global patterns of loss of life from landslides. Geology 40(10):927–930

    Article  Google Scholar 

  • Prestininzi A, Romeo R (2000) Earthquake-induced ground failures in Italy. Eng Geol 58(3–4):387–397

    Article  Google Scholar 

  • Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A, Ostrovskiy A, Cantor C, Vijg J, Zhavoronkov A (2016) Deep biomarkers of human aging: application of deep neural networks to biomarker development. Aging (albany NY) 8(5):1021

    Article  Google Scholar 

  • Rahmati O, Kornejady A, Samadi M, Deo RC, Conoscenti C, Lombardo L, Dayal K, Taghizadeh-Mehrjardi R, Pourghasemi HR, Kumar S et al (2019) PMT: New analytical framework for automated evaluation of geo-environmental modelling approaches. Sci Total Environ 664:296–311

    Article  Google Scholar 

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:60–91

    Article  Google Scholar 

  • Riley SJ, DeGloria SD, Elliot R (1999) Index that quantifies topographic heterogeneity. Int J Sci 5(1–4):23–27

  • Romeo R (2000) Seismically induced landslide displacements: a predictive model. Eng Geol 58(3–4):337–351

  • Rossi M, Reichenbach P (2016) LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0. Geosci Model Dev 9(10):3533

  • Sassa K (1996) Prediction of earthquake induced landslides. In: Landslides, pp 115–132

  • Schlögel R, Marchesini I, Alvioli M, Reichenbach P, Rossi M, Malet JP (2018) Optimizing landslide susceptibility zonation: effects of DEM spatial resolution and slope unit delineation on logistic regression models. Geomorphol 301:10–20

    Article  Google Scholar 

  • Shrestha S, Kang T-S (2019) Assessment of seismically-induced landslide susceptibility after the 2015 Gorkha earthquake. Nepal Bulletin of Engineering Geology and the Environment 78(3):1829–1842

    Article  Google Scholar 

  • Song Y, Gong J, Gao S, Wang D, Cui T, Li Y, Wei B (2012) Susceptibility assessment of earthquake-induced landslides using Bayesian network: a case study in Beichuan, China. Comput Geosci 42:189–199

    Article  Google Scholar 

  • Steger S, Schmaltz E, Glade T (2020) The (f) utility to account for pre-failure topography in data-driven landslide susceptibility modelling. Geomorphology 354:107041

    Article  Google Scholar 

  • Tacchia D, Masella G, Pannuti V, Vitale V (2005) La nuova Carta Geologica d’Italia scala 1:1,000,000. In: Atti della 9 Conferenza Nazionale ASITA, volume 15, p 18

  • Tanyaş H, van Westen C, Allstadt K, Nowicki AJM, Görüm T, Jibson R, Godt J, Sato H, Schmitt R, Marc O, Hovius N (2017) Presentation and analysis of a worldwide database of earthquake-induced landslide inventories. J Geophys Res Earth Surf 122(10):1991–2015

    Article  Google Scholar 

  • Tanyaş H, Görüm T, Kirschbaum D, Lombardo L (2022) Could road constructions be more hazardous than an earthquake in terms of mass movement? Nat Hazards 112(1):639–663

    Article  Google Scholar 

  • Tanyaş H, Lombardo L (2020) Completeness index for earthquake-induced landslide inventories. Eng Geol 264:105331

    Article  Google Scholar 

  • Tanyaş H, Rossi M, Alvioli M, van Westen CJ, Marchesini I (2019) A global slope unit-based method for the near real-time prediction of earthquake-induced landslides. Geomorphology 327:126–146

    Article  Google Scholar 

  • Titti G, Napoli GN, Conoscenti C, Lombardo L (2022a) Cloud-based interactive susceptibility modeling of gully erosion in google earth engine. Int J Appl Earth Obs Geoinf 115:103089

    Google Scholar 

  • Titti G, Sarretta A, Lombardo L, Crema S, Pasuto A, Borgatti L (2022b) Mapping susceptibility with open-source tools: a new plugin for QGIS. Front Earth Sci 229

  • Titti G, van Westen C, Borgatti L, Pasuto A, Lombardo L (2021) When enough is really enough? on the minimum number of landslides to build reliable susceptibility models. Geosciences 11(11):469

    Article  Google Scholar 

  • Trigila A, Frattini P, Casagli N, Catani F, Crosta G, Esposito C, Iadanza C, Lagomarsino D, Mugnozza GS, Segoni S et al (2013) Landslide susceptibility mapping at national scale: the Italian case study. In: Landslide science and practice, pp 287–295. Springer

  • Umar Z, Pradhan B, Ahmad A, Jebur MN, Tehrany MS (2014) Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. CATENA 118:124–135

    Article  Google Scholar 

  • Van Westen C (2002) Use of weights of evidence modeling for landslide susceptibility mapping. International Institute for Geoinformation Science and Earth Observation: Enschede, The Netherlands p 21

  • Van Westen C, Van Asch TW, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Env 65(2):167–184

    Article  Google Scholar 

  • Varnes and the IAEG Commission on Landslides and Other Mass-Movements (1984) Landslide hazard zonation: a review of principles and practice. Natural Hazards, Series. Paris: United Nations Economic, Scientific and cultural organization. UNESCO 3:63

  • Wang Y, Fang Z, Hong H (2019) Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci Total Environ 666:975–993

    Article  Google Scholar 

  • Wasowski J, Del Gaudio V (2000) Evaluating seismically induced mass movement hazard in Caramanico Terme (Italy). Eng Geol 58(3–4):291–311

    Article  Google Scholar 

  • Wood J (1996) The geomorphological characterisation of digital elevation models. Ph.D. thesis, University of Leicester

  • Zevenbergen LW, Thorne CR (1987) Quantitative analysis of land surface topography. Earth Surf Proc Land 12(1):47–56

    Article  Google Scholar 

  • Zhou C, Yin K, Cao Y, Ahmed B (2016) Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China. Eng Geol 204:108–120

    Article  Google Scholar 

  • Zhou C, Yin K, Cao Y, Ahmed B, Li Y, Catani F, Pourghasemi HR (2018) Landslide susceptibility modeling applying machine learning methods: a case study from Longju in the Three Gorges Reservoir area, China. Comput Geosci 112:23–37

    Article  Google Scholar 

  • Zhou S, Fang L (2015) Support vector machine modeling of earthquake-induced landslides susceptibility in central part of Sichuan province. China Geoenvironmental Disasters 2(1):2

    Article  Google Scholar 

  • Zhu X, Xu Q, Tang M, Nie W, Ma S, Xu Z (2017) Comparison of two optimized machine learning models for predicting displacement of rainfall-induced landslide: a case study in Sichuan Province, China. Eng Geol 218:213–222

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the project "Distribution analysis of earthquake-induced instability effects based on a national scale inventory for the probabilistic definition of multi-hazard scenarios" (University of Rome Sapienza - RM120172A2582F52 - year 2020) supervised by Prof. Salvatore Martino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Amato.

Appendix. Predictors’ information

Appendix. Predictors’ information

Table 2 List of the predictors assigned to each slope unit. Codes reported in “Predictors code and description” have been used to represent the results of the permutation feature importance. Predictors have been grouped as indicated in “Group” to perform the combination-group analysis. Terrain characteristics were calculated from a 20-m Digital Elevation Model (DEM)
Table 3 Description of the classes of the categorical predictor “Lithology”
Table 4 Description of the reference soil groups compared in the classes of the categorical predictor “Soil type”

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amato, G., Fiorucci, M., Martino, S. et al. Earthquake-triggered landslide susceptibility in Italy by means of Artificial Neural Network. Bull Eng Geol Environ 82, 160 (2023). https://doi.org/10.1007/s10064-023-03163-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-023-03163-x

Keywords

Navigation