Skip to main content

Advertisement

Log in

Data fusion of in situ geophysical and geotechnical information for levee characterization

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

A Correction to this article was published on 28 April 2021

This article has been updated

Abstract

Due to the lack of knowledge concerning their construction and their history (breaks and repairs, extensions…), fluvial levees are often badly characterized. Breaks of work are likely to lead to disastrous consequences such as loss of lives and economic disasters. In order to prevent the risk of breakage, special supervision of the protection levee is required. Recognized methodologies for the assessment of hydraulic structures include complementary geotechnical and geophysical reconnaissance methods. This work presents a new way of mathematically combining data from these two types of information sources, taking into account the specificities of each kind of method (level of imperfection associated with the data, spatial distribution of the information). This new methodology considers the framework fixed by the theory of belief masses and improves the characterization of lithological sets within levees. It provides information on the level of conflict between information sources while proposing a confidence index associated with the results. The methodology is implemented through a subsoil section characterized by a real earthen levee investigation campaign. This campaign involves electrical resistivity tomography as well as particle size distribution from laboratory testing and on-site cone penetrometer test. The results highlight the ability of this fusion methodology to characterize the considered materials as well as to specify the positions of the interfaces and the associated levels of confidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Change history

References

  • AFNOR NF P11-300 (1992) Exécution des terrassements - Classification des matériaux utilisables dans la construction des remblais et des couches de forme d'infrastructures routières

  • AFNOR NF P94-056 (1995) Sols : reconnaissance et essais - Analyse granulométrique - Méthode par tamisage à sec après lavage

  • AFNOR NF P94-113 (1996) Sols : reconnaissance et essais - Essai de pénétration statique

  • Althuwaynee OF, Pradhan B, Lee S (2012) Application of an evidential belief function model in landslide susceptibility mapping. Comput Geosci 44:120–135

    Article  Google Scholar 

  • Arosio D, Munda S, Tresoldi G, Papini M, Longoni L, Zanzi L (2017) A customized resistivity system for monitoring saturation and seepage in earthen levees: installation and validation. Open Geosciences 9:457–467. https://doi.org/10.1515/geo-2017-0035

    Article  Google Scholar 

  • Binaghi E, Luzi L, Madella P, Pergalani F, Rampini A (1998) Slope instability zonation: a comparison between certainty factor and fuzzy Dempster–Shafer approaches. Nat Hazards 17(1):77–97

    Article  Google Scholar 

  • Brierley GJ, Ferguson RJ, Woolfe KJ (1997) What is a fluvial levee? Sediment Geol 114(1-4):1–9

    Article  Google Scholar 

  • Cazanacli D, Smith ND (1998) A study of morphology and texture of natural levees - Cumberland Marshes, Saskatchewan, Canada. Geomorphology 25(1-2):43–55

    Article  Google Scholar 

  • Dempster AP (1967) Upper and lower probabilities induced by a multivalued mapping. The annals of mathematical statistics, Springer, Berlin, pp 325–339

    Google Scholar 

  • Dezert T, Fargier Y, Lopes SP, Côte P (2018a) Application of belief functions to levee assessment. In International Conference on Belief Functions. Springer, Cham

    Google Scholar 

  • Dezert T, Lopes SP, Fargier Y, Cote P (2018b) Geophysical and geotechnical data fusion for levee assessment-interface detection with biased geophysical data. In 24th European Meeting of Environmental and Engineering Geophysics

  • Dezert T, Fargier Y, Palma Lopes S, Côte P (2019a) Geophysical and geotechnical methods for fluvial levee investigation: a review. Eng Geol 260:105–206

    Article  Google Scholar 

  • Dezert T, Lopes SP, Fargier Y, de Forquenot la Fortelle Q, Cote P, Tourment R (2019b) Merging geophysical and geotechnical data acquired on a test bed for levee diagnosis application. In Digues 2019-3eme Colloque National sur les digues maritimes et fluviales de protection contre les inondations

  • Fauchard C, Mériaux P (2007) Geophysical and geotechnical methods for diagnosing flood protection dikes: Guide for implementation and interpretation. Quae

  • Foster M, Fell R, Spannagle M (2000) The statistics of embankment dam failures and accidents. Can Geotech J 37(5):1000–1024

    Article  Google Scholar 

  • François D, Mériaux P, Monnet J (2016) Méthodologie de reconnaissance et de diagnostic de l’érosion interne des ouvrages hydrauliques en remblai. Presses des Ponts : Publications IREX, Paris. OCLC: 966418274

  • Hervé S, Bénot R (2013) Digue de la Loire à St Clément des Levées (49) : Suivi par méthodes géophysiques, Compte-rendu des mesures 2012. IFSTTAR – Opération 11R103 DOFEAS

  • Hojat A, Arosio D, Longoni L, Papini M, Tresoldi G, Zanzi L (2019) Installation and validation of a customized resistivity system for permanent monitoring of a river embankment. EAGE-GSM 2nd Asia Pacific Meeting on Near Surface Geoscience & Engineering, April 22 - 26, Kuala Lumpur

  • Jodry C, Lopes SP, Fargier Y, Côte P, Sanchez M (2017) A cost-effective 3D electrical resistivity imaging approach applied to dike investigation. Near Surface Geophysics 15(1):27–41

    Article  Google Scholar 

  • Jodry C, Lopes SP, Fargier Y, Sanchez M, Côte P (2019) 2D-ERT monitoring of soil moisture seasonal behaviour in a river levee: a case study. J Appl Geophys 167:140–151

    Article  Google Scholar 

  • Loke MH (2013) Tutorial: 2-D and 3-D electrical imaging surveys. http://www.geotomosoft.com

  • Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34(3):182–187

    Article  Google Scholar 

  • Lorenzo JM, Hicks J, Vera EE (2014) Integrated seismic and cone penetration test observations at a distressed earthen levee: Marrero, Louisiana, USA. Eng Geol 168:59–68

    Article  Google Scholar 

  • Martin A, Osswald C, Dezert J, Smarandache F (2008) General combination rules for qualitative and quantitative beliefs. Infinite Study

  • Mogaji KA, Lim HS, Abdullah K (2015) Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster–Shafer model. Arab J Geosci 8(5):3235–3258

    Article  Google Scholar 

  • Pasierb B, Grodecki M, Gwóźdź R (2019) Geophysical and geotechnical approach to a landslide stability assessment: a case study. Acta Geophysica, pp:1–12

  • Phoon KK, Kulhawy FH (1999) Characterization of geotechnical variability. Can Geotech J 36(4):612–624

    Article  Google Scholar 

  • Robertson PK (2010) Soil behavior type: an update. 2nd International Symposium on Cone Penetrating Testing, Huntington Beach, Canada: USA

    Google Scholar 

  • Royet P, Palma Lopes S, Fauchard C, Mériaux P, Auriau L (2013) Rapid and cost-effective dike condition assessment methods: geophysics and remote sensing. FloodProBE Project

  • Sabor K, Jougnot D, Guerin R, Apffel L, Steck B (2019) Integrated analysis of geophysical data using a data mining approach. In 25th European Meeting of Environmental in Engineering Geophysics

  • Shaaban F, Ismail A, Massoud U, Mesbah H, Lethy A, Abbas AM (2013) Geotechnical assessment of ground conditions around a tilted building in Cairo–Egypt using geophysical approaches. Journal of the Association of Arab Universities for Basic and Applied Sciences 13(1):63–72

    Article  Google Scholar 

  • Shafer G (1976) A mathematical theory of evidence. Princeton University Press

  • Smarandache F, Dezert J (2009) Advances and applications of DSmT for information fusion. Collected works – ARP Volume 3

  • Smets P (1990) The combination of evidence in the transferable belief model. IEEE Trans Pattern Anal Mach Intell 12(5):447–458

    Article  Google Scholar 

  • Smets P (1997) Imperfect information: imprecision and uncertainty. Uncertainty management in information systems, Springer, pp 225–254

    Google Scholar 

  • Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 2(6):568–576

    Article  Google Scholar 

  • Tehrany MS, Kumar L (2018) The application of a Dempster–Shafer-based evidential belief function in flood susceptibility mapping and comparison with frequency ratio and logistic regression methods. Environ Earth Sci 77(13):490

    Article  Google Scholar 

  • Tran L, Duckstein L (2002) Comparison of fuzzy numbers using a fuzzy distance measure. Fuzzy Sets Syst 130(3):331–341

    Article  Google Scholar 

  • Tresoldi G, Arosio D, Hojat A, Longoni L, Papini M, Zanzi L (2019) Long-term hydrogeophysical monitoring of the internal conditions of river levees. Eng Geol 259:105–139. https://doi.org/10.1016/j.enggeo.2019.05.016

    Article  Google Scholar 

  • Vuillet M (2012) Élaboration d’un modèle d’aide à la décision probabiliste pour l’évaluation de la performance des digues fluviales. Doctoral dissertation, Paris Est

    Google Scholar 

  • Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1(1):3–28

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the technicians at the Cerema French Institute involved in the investigation campaign and laboratory tests for their precious help throughout the experimental phase. We also thank the Région Pays de la Loire for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Dezert.

Additional information

The original online version of this article was revised: Originally, the Equations 9, 10, 12 and 13 were wrongly published in the online version. This has been correctly presented here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dezert, T., Palma Lopes, S., Fargier, Y. et al. Data fusion of in situ geophysical and geotechnical information for levee characterization. Bull Eng Geol Environ 80, 5181–5197 (2021). https://doi.org/10.1007/s10064-021-02225-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-021-02225-2

Keywords

Navigation