Skip to main content
Log in

Petrophysical and acoustic assessment of carbonate rocks, Zahle area, central Lebanon

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Transport and acoustic measurements have been conducted on fifteen rock samples collected from central Lebanon to characterize the rock properties and to assess the impact of lithology, pore types, pore sizes, and textural parameters on the storage capacity and elastic characteristics. The spontaneous imbibition of selected samples was examined by detecting the moving capillary front across a sample. The coefficient of capillarity derived from the spontaneous imbibition is positively correlated with permeability. Seismic velocities in the studied rocks vary widely and are positively correlated with the rock density. Matrix-supported rocks with a larger proportion of micropores have lower seismic wave velocities, whereas the grain-supported carbonates exhibit low to moderate porosity and higher acoustic velocities. The elastic properties of the studied carbonates indicate a granular, rather than a crystalline, texture for the majority of the studied rocks. The widely variable elastic behavior of basically carbonate rocks implies that seismic reflection profiles in carbonate sequences may contain seismic reflections that do not result from non-carbonate intercalations but which result mainly from variable porosity, pore types, and shapes in the carbonate rocks themselves. This study provides important information on the textural, petrophysical, and elastic properties of carbonate rocks which are crucial for the assessment and understanding of the seismic reflection sections in subsurface carbonate reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adam L, Batzle M, Brevik I (2006) Gassmann's fluid substitution and shear modulus variability in carbonates at laboratory seismic and ultrasonic frequencies. Geophys 71(6):F173–F183

    Google Scholar 

  • Ali A, Wagreich M, Strasser M (2018) Depositional constraints and diagenetic pathways controlling petrophysics of middle Miocene shallow-water carbonate reservoirs (Leitha limestones), Central Paratethys, Austria-Hungary. Mar Pet Geol 91:586–598. https://doi.org/10.1016/j.marpetgeo.2018.01.031

    Article  Google Scholar 

  • Alqudah M, Monzer A, Sanjuan J, Salah MK, Alhejoj IK (2019) Calcareous nannofossil, nummulite and ostracod assemblages from Paleocene to Miocene successions in the Bekaa Valley (Lebanon) and its paleogeographic implications. J Afr Earth Sci 151:82–94. https://doi.org/10.1016/j.jafrearsci.2018.12.001

    Article  Google Scholar 

  • Alsharhan AS, Nairn AEM (1995) Tertiary of the Arabian Gulf: sedimentology and hydrocarbon potential. Palaeogeogr Palaeoclimatol Palaeoecol 114:369–384

    Google Scholar 

  • Anselmetti FS, Eberli GP (1993) Controls on sonic velocity in carbonates. PAGEOPH 141:287–323

    Google Scholar 

  • Anselmetti FS, Eberli GP (1999) The velocity-deviation log: a tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density logs. AAPG Bull 83:450–466

    Google Scholar 

  • Anselmetti FS, Eberli GP (2001) Sonic velocity in carbonates-a combined product of depositional lithology and diagenetic alterations, in R. N. Ginsburg, ed., Subsurface geology of a prograding carbonate platform margin, Great Bahama Bank, results of the Bahamas drilling project. Soc Sed Geol 70:193–216

    Google Scholar 

  • Anselmetti FS, von Salis GA, Cunningham KJ, Eberli GP (1997) Acoustic properties of Neogene carbonates and siliciclastics from the subsurface of the Florida Keys: implications for seismic reflectivity. Mar Geol 144:9–31

    Google Scholar 

  • Archie GE (1942) Electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146:54–62

    Google Scholar 

  • Baechle G, Colpaert A, Eberli G, Weger R (2008) Effects of microporosity on sonic velocity in carbonate rocks. Lead Edge 27:1012–1018

    Google Scholar 

  • Benavente D, Pla C, Cueto N, Galvan S, Martinez-Martinez J, Garcia-del-Cura MA, Ordóñez S (2015) Predicting water permeability in sedimentary rocks from capillary imbibition and pore structures. Eng Geol 195:301–311. https://doi.org/10.1016/j.enggeo.2015.06.003

    Article  Google Scholar 

  • Beydoun ZR (1991) Arabian plate hydrocarbon, geology and potential - a plate tectonic approach. AAPG Stud Geol 33:77

    Google Scholar 

  • Beydoun ZR (1999) Evolution and development of the Levant (Dead Sea Rift) transform system: a historical-chronological review of a structural controversy, in MacNiocaill C & Rayan PD (eds), Continental tectonics. Geol Soc Lond special pub 164: 239–255

  • Biddle KT, Schlager W, Rudolph KW, Bush TL (1992) Seismic model of a progradational carbonate platform, Picco di Valandro, the Dolomites, northern Italy. AAPG Bull 76:14–30

    Google Scholar 

  • Biot MA (1956a) Theory of propagation of elastic waves in a fluid saturated porous solid-I: low frequency range. J Acoust Soc Am 28:168–178

    Google Scholar 

  • Biot MA (1956b) Theory of propagation of elastic waves in a fluid saturated porous solid—II: high frequency range. J Acoust Soc Am 28:179–191

    Google Scholar 

  • Braaksma H, Kenter JAM, Proust JN, Dijkmans V, Van Hoek T, Mahieux G, Drijkoningen GG (2003) Case history controls on acoustic properties of Upper Jurassic siliciclastic rocks (Boulonnais, northern France). Geophys 68(1):58–69

    Google Scholar 

  • Brigaud B, Vincent B, Durlet C, Deconinck J-F, Blanc P, Trouiller A (2010) Acoustic properties of ancient shallow-marine carbonates: effects of depositional environments and diagenetic processes (Middle Jurassic, Paris Basin, France). J Sediment Res 80:791–807

    Google Scholar 

  • Burchette TP (2012) Carbonate rocks and petroleum reservoirs: a geological perspective from the industry. Geol Soc Lond Spec Publ 370:17–37. https://doi.org/10.1144/SP370.14

    Article  Google Scholar 

  • Campbell AE, Stafleu J (1992) Seismic modeling of an Early Jurassic, drowned carbonate platform: Djebel Bou Dahar, High Atlas, Morocco (1). AAPG Bull 76:1760–1777

    Google Scholar 

  • Casteleyn L et al (2010) Interrelations of the petrophysical, sedimentological and microstructural properties of the Oolithe Blanche formation (Bathonian, saline aquifer of the Paris Basin). Sediment Geol 230:123–138. https://doi.org/10.1016/j.sedgeo.2010.07.003

    Article  Google Scholar 

  • Casteleyn L, Robion P, David C, Collin PY, Menéndez B, Fernandes N, Desaubliaux G, Rigollet C (2011) An integrated study of the petrophysical properties of carbonate rocks from the “Oolithe Blanche” formation in the Paris Basin. Tectonophysics 503:18–33

    Google Scholar 

  • Christensen NI, Szymanski DL (1991) Seismic properties and the origin of reflectivity from a classic Paleozoic sedimentary sequence, valley and ridge province, southern Appalachians. Geol Soc Am Bull 103:277–289

    Google Scholar 

  • David C, Menéndez B, Mengus J-M (2008) The influence of mechanical damage on the fluid flow patterns investigated using CT scanning imaging and acoustic emissions techniques. Geophys Res Lett 35:L16313. https://doi.org/10.1029/2008GL034879

    Article  Google Scholar 

  • David C, Menéndez B, Mengus J-M (2011) X-ray imaging of water motion during capillary imbibition in porous rocks. Part 1: methods, microstructures and mechanical deformation. J Geophys Res 116:B03204. https://doi.org/10.1029/2010JB007972

    Article  Google Scholar 

  • David C, Bertauld D, Dautriat J, Sarout J, Menéndez B, Nabawy B (2015) Detection of moving capillary front in porous rocks using X-ray and ultrasonic methods. Front Phys 3:53. https://doi.org/10.3389/fphy.2015.00053

    Article  Google Scholar 

  • Deville de Periere M, Durlet C, Vennin E, Lambert L, Bourillot R, Caline B, Poli E (2011) Morphometry of micrite particles in cretaceous microporous limestones of the Middle East: influence on reservoir properties. Mar Pet Geol 28:1727–1750. https://doi.org/10.1016/j.marpetgeo.2011.05.002

    Article  Google Scholar 

  • Dewit J, Huysmans M, Muchez P, Hunt DW, Thurmond JB, Verges J, Saura E, Fernandez N, Romaire I, Esestime P, Swennen R (2012) Reservoir characteristics of fault-controlled hydrothermal dolomite bodies: Ramales platform case study. Geol Soc Lond Spec Publ 370(1):83–109

    Google Scholar 

  • Dürrast H, Siegesmund S (1999) Correlation between rock fabrics and physical properties of carbonate reservoir rocks. Int J Earth Sci 88:392–408

    Google Scholar 

  • Eberli G, Baechle G, Anselmetti F, Incze M (2003) Factors controlling elastic properties in carbonate sediments and rocks. Lead Edge 22(7):654–660

    Google Scholar 

  • Ehrenberg SN, Aqrawi AAM, Nadeau PH (2008) An overview of reservoir quality in producing cretaceous strata of the Middle East. Pet Geosci 14:307–318

    Google Scholar 

  • Fabricius IL (2003) How burial diagenesis of chalk sediments controls sonic velocity and porosity. AAPG Bull 87(11):1755–1778

    Google Scholar 

  • Fabricius IL, Røgen B, Gommesen L (2007) How depositional texture and diagenesis control petrophysical and elastic properties of samples from five North Sea chalk fields. Pet Geosci 13:81–95

    Google Scholar 

  • Folk RL (1966) A review of grain-size parameters. Sedimentol 6:73–93

    Google Scholar 

  • Fournier F, Leonide P, Biscarrat K, Gallois A, Borgomano J, Foubert A (2011) Elastic properties of microporous cemented grainstones. Geophys 76:E211–E226. https://doi.org/10.1190/geo2011-0047.1

    Article  Google Scholar 

  • Fournier F, Leonide P, Kleipool L, Toullec R, Reijmer JJG, Borgomano J, Klootwijk T, Van Der Molen J (2014) Pore space evolution and elastic properties of platform carbonates (Urgonian limestone, BarremianeAptian, SE France). Sediment Geol 308:1–17

    Google Scholar 

  • Gardner GHF, Gardner LW, Gregory AR (1974) Formation velocity and density-the diagnostic basics for stratigraphic traps. Geophys 39:770–780

    Google Scholar 

  • Gassmann F (1951) Elastic waves through a packing of spheres. Geophys 16:673–685

    Google Scholar 

  • Gerçek H (2007) Poisson's ratio values for rocks. Int J Rock Mech Min Sci 44:1–13

    Google Scholar 

  • Guéguen Y, Palciauskas V (1992) Introduction to the physics of rocks. Princ Univ Press, Princeton

    Google Scholar 

  • Hudson JA, Cosgrove JW, Kemppainen K, Johansson E (2011) Faults in crystalline rock and the estimation of their mechanical properties at the Olkiluoto site, western Finland. Eng Geol 117:246–258

    Google Scholar 

  • Kaldi J (1989) Diagenetic microporosity (chalky porosity), Middle Devonian Kee Scarp reef complex, Norman Wells, Northwest Territories, Canada. Sediment Geol 63:241–252

    Google Scholar 

  • Kearey P, Brooks M, Hill I (2002) An introduction to geophysical exploration. Blackwell Pub

  • Kenter J, Podladchikov F, Reinders M, Van der Gaast S, Fouke B, Sonnenfeld M (1997) Parameters controlling sonic velocities in a mixed carbonate-siliciclastics Permian shelf-margin (upper San Andres formation, Last Chance Canyon, New Mexico). Geophys 62:505–520

    Google Scholar 

  • Kenter JAM, Anselmetti FS, Kramer PH, Westphal H, Vandamme MGM (2002) Acoustic properties of “young” carbonate rocks, Odp leg 166 and boreholes Clino and Unda, Western Great Bahama Bank. J Sediment Res 72:129–137

    Google Scholar 

  • Kenter J, Braaksma H, Verwer K, van Lanen X (2007) Acoustic behavior of sedimentary rocks: geologic properties versus Poisson’s ratios. Lead Edge 26:436–444

    Google Scholar 

  • Khazanehdari J, Sothcott J (2003) Variation in dynamic shear elastic modulus of sandstone upon fluid saturation and substitution. Geophys 68:472–481

    Google Scholar 

  • Klinkenberg LJ (1941) The permeability of porous media to liquids and gases. Am Pet Inst, Drill Prod Pract:200–213

  • Lapponi F, Casini G, Sharp I, Blendinger W, Fernandez N, Romaire I, Hunt D (2011) From outcrop to 3D modelling: a case study of a dolomitized carbonate reservoir, Zagros Mountains, Iran. Pet Geosci 17(3):283–307

    Google Scholar 

  • Lønøy A (2006) Making sense of carbonate pore systems. AAPG Bull 90:1381–1405

    Google Scholar 

  • Mavko G, Jizba D (1991) Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophys 56:1940–1949

    Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (1998) The rock physics handbook. Cambridge University Press

  • Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook, 2ed. Cambridge University Press

  • Moshier SO (1989) Development of microporosity in amicritic limestone reservoir, lower cretaceous, Middle East. Sediment Geol 63:217–240

    Google Scholar 

  • Nader FH, Swennen R (2004) Petroleum prospects of Lebanon: some remarks from sedimentological and diagenetic studies of Jurassic carbonates. Mar Pet Geol 21:427–441

    Google Scholar 

  • Neto IAL, Misságia RM, Ceia MA, Archilha NL, Hollis C (2015) Evaluation of carbonate pore system under texture control for prediction of microporosity aspect ratio and shear wave velocity. Sediment Geol 323:43–65. https://doi.org/10.1016/j.sedgeo.2015.04.011

    Article  Google Scholar 

  • Nurmi R, Standen E (1997) Carbonates, the inside story. Midd East Well Eval Rev 18:28–41

    Google Scholar 

  • Pons A, David C, Fortin J, Stanchits S, Menéndez B, Mengus J-M (2011) X-ray imaging of water motion during capillary imbibition in porous rocks. Part 2: influence of compaction bands. J Geophys Res 116:B03205. https://doi.org/10.1029/2010JB007973

    Article  Google Scholar 

  • Rafavich F, Kendall CHSC, Todd TP (1984) The relationship between acoustic properties and the petrographic character of carbonate rocks. Geophys 49:1622–1636

    Google Scholar 

  • Ravalec ML, Darot M, Reuschlé T, Guéguen Y (1996) Transport properties and microstructural characteristics of a thermally cracked mylonite. PAGEOPH 146:207–227

    Google Scholar 

  • Raymer DS, Hunt ER, Gardner JS (1980) An improved sonic transit time-to-porosity transform. Paper presented at the SPWLA 21st Annual Logging Symposium, 1–12, Soc. Prof. Well log analysts, Lafayette, La., 8–11 July

  • Regnet JB, Robion P, David C, Fortin J, Brigaud B, Yven B (2015) Acoustic and reservoir properties of microporous carbonate rocks: implication of micrite particle size and morphology. J Geophys Res Solid Earth 120. https://doi.org/10.1002/2014JB011313

  • Salah MK, Zhao D (2003) 3-D seismic structure of Kii peninsula in Southwest Japan: evidence for slab dehydration in the forearc. Tectonophysics 364:191–213. https://doi.org/10.1016/S0040-1951(03)00059-3

    Article  Google Scholar 

  • Salah MK, Şahin Ş, Aydin U (2011) Seismic velocity and Poisson’s ratio tomography of the crust beneath East Anatolia. J Asia Earth Sci 40:746–761. https://doi.org/10.1016/j.jseaes.2010.10.021

    Article  Google Scholar 

  • Salah MK, El Ghandour MM, Abdel-Hameed AT (2016) Effect of diagenesis on the petrophysical properties of the Miocene rocks at the Qattara depression, North Western Desert, Egypt. Arab J Geosci 9:329. https://doi.org/10.1007/s12517-015-2275-8

    Article  Google Scholar 

  • Salah MK, Alqudah M, Abd El-Aal AK, Barnes C (2018) Effects of porosity and composition on seismic wave velocities and elastic moduli of lower cretaceous rocks, central Lebanon. Acta Geophysica. https://doi.org/10.1007/s11600-018-0187-1

  • Sanjuan J, Alqudah M (2018) Charophyte flora from the Miocene of Zahle (Beeka Valley, Lebanon): biostratigraphic, palaeoenvironmental and palaeobiogeographical implications. Geodiversitas 40(10):195–209

    Google Scholar 

  • Schlumberger Ltd (2013) Oilfield Glossary, the Poisson's Ratio. Available at: http://www.glossary.oilfield.slb.com/en/terms/p/poissons_ratio.aspx (accessed 22.07.13)

  • Sharland PR, Archer R, Casey DM, Davies RB, Hall SH, Heward AP, Horbury AD, Simmons MD (2001) Arabian plate sequence stratigraphy. GeoArabia Spec Publ 2, Gulf PetroLink, Bahrain, 371 p

  • Siebold A, Walliser A, Nardin M, Oppliger M, Schultz J (1997) Capillary rise for thermodynamic characterization of solid particle surface. J Colloid Interface Sci 186:60–70. https://doi.org/10.1006/jcis.1996.4640

    Article  Google Scholar 

  • Siegesmund S, Dürrast H (2014) Physical and mechanical properties of rocks. In: Stone and Architecture, by Siegesmund, S., Snethlage, R. (eds.), Springer-Verlag Berlin Heidelberg, DOI: https://doi.org/10.1007/978-3-642-45155-3_3

  • Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties. A handbook, MIT Press

  • Soete J, Kleipool LM, Claes H, Hamaekers H, Kele S, Özkul M, Foubert A, Reijmer JJG, Swennen R (2015) Acoustic properties in travertines and their relation to porosity and pore types. Mar Pet Geol 59:320–335. https://doi.org/10.1016/j.marpetgeo.2014.09.004

    Article  Google Scholar 

  • Sun YF, Berteussen K, Vega S, Eberli GP, Baechle GT, Weger RJ, Massaferro J L, Bracco Gartner GL, Wagner PD (2006) Effects of pore structure on 4D seismic signals in carbonate reservoirs. SEG Tech Prog Expanded Abst 3260–3264. https://doi.org/10.1190/1.2370208

  • Vanorio T, Mavko G (2011) Laboratory measurements of the acoustic and transport properties of carbonate rocks and their link with the amount of microcrystalline matrix. Geophys 76:E105–E115. https://doi.org/10.1190/1.3580632

    Article  Google Scholar 

  • Verwer K, Braaksma H, Kenter J (2008) Acoustic properties of carbonates: effects of rock texture and implications for fluid substitution. Geophys 73:B51–B65. https://doi.org/10.1190/1.2831935

    Article  Google Scholar 

  • Walley CD (1997) The lithostratigraphy of Lebanon: a review. Leb Sci Bull 10:1

    Google Scholar 

  • Walsh JB, Brace WF (1984) The effect of pressure on porosity and the transport properties of rock. J Geophys Res 89:9425–9431

    Google Scholar 

  • Wang Z, Hirsche WK, Sedgwick G (1991) Seismic velocities in carbonate rocks. Can Pet Tech 30:112–122

    Google Scholar 

  • Weger RJ, Eberli GP, Baechle GT, Massaferro JL, Sun Y (2009) Quantification of pore structure and its effect on sonic velocity and permeability in carbonates. AAPG Bull 93(10):1297–1317. https://doi.org/10.1306/05270909001

    Article  Google Scholar 

  • Wilkens R, Simmons G, Caruso L (1984) The ratio Vp/Vs as a discriminant of composition for siliceous limestones. Geophys 49:1850–1860

    Google Scholar 

  • Wyllie MRJ, Gregory AR, Gardner LW (1956) Elastic wave velocities in heterogeneous and porous media. Geophys 21:41–70

    Google Scholar 

  • Wyllie MRJ, Gregory AR, Gardner GHF (1958) An experimental investigation of factors affecting elastic wave velocities in porous media. Geophys 23:459–493

    Google Scholar 

  • Xu S, Payne M, Exxonmobil (2009) Modeling elastic properties in carbonate rocks. Lead Edge 28:66–74

    Google Scholar 

  • Yu C, Ji S, Li Q (2016) Effects of porosity on seismic velocities, elastic moduli and Poisson’s ratios of solid materials and rocks. J Rock Mech Geotech Eng 8:35–49. https://doi.org/10.1016/j.jrmge.2015.07.004

    Article  Google Scholar 

  • Zhang T, Dou Q, Sun Y (2012) Improving porosity-velocity relations using carbonate pore types. SEG Las Vegas 2012 Ann Meet, https://doi.org/10.1190/segam2012-1214.1

  • Zhao D, Negishi H (1998) The 1995 Kobe earthquake: seismic image of the source zone and its implications for the rupture nucleation. J Geophys Res 103:9967–9986

    Google Scholar 

  • Zhao D, Kanamori H, Negishi H (1996) Tomography of the source area of the 1995 Kobe earthquake: evidence for fluids at the hypocenter? Science 274:1891–1894

    Google Scholar 

Download references

Funding

This research has been partially financed through a URB (University Research Board) Grant from the American University of Beirut (Award No. 103009; Project No. 22759).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed K. Salah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salah, M.K., Alqudah, M. & David, C. Petrophysical and acoustic assessment of carbonate rocks, Zahle area, central Lebanon. Bull Eng Geol Environ 79, 5455–5475 (2020). https://doi.org/10.1007/s10064-020-01900-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-020-01900-0

Keywords

Navigation