Skip to main content
Log in

Abrasiveness evaluation of selected river gravels of Pakistan using LCPC rock abrasivity test

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Abrasivity of rock and soil causes tool wear in excavation or drilling operations, and the presence of sandy gravels stratum also plays a significant role in causing serious damage to the cutting tools. Understanding the wear mechanism is important for the cost estimation and planning of projects. Abrasivity of cobbles and boulders present within soil matrix may vary from negligible in some cases to severe under certain conditions depending upon the volume and characteristics of those cobbles and boulders being encountered. Several methods have been proposed to assess the abrasivity of rock. In the present research, LCPC rock abrasivity tests were performed on 14 gravel samples collected from different river deposits of Pakistan. Practical extensions to the standard LCPC abrasivity test were used and fraction larger than 6.3 mm was incorporated in accordance with the method proposed by Thuro et al. (2007). Moreover, in order to observe the effect of increasing grain size on LCPC abrasivity coefficient (LAC g/t), 3 river gravel samples (out of initially selected 14 samples) were chosen and evaluated along with the computation of brittleness coefficient (LBC, %). Correlations were developed with LAC values of originally rounded grains against crushed/angular grains. XRD analysis was incorporated in order to determine the mineralogical composition of each sample and the possible correlation of LAC (g/t) with abrasive mineral content (AMC, %) for both modes of testing (rounded and crushed samples) were developed. Moreover, the correlations of LAC (g/t) with quartz content, equivalent quartz content, and mass-weighted average Moh’s hardness were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • AFNOR (1990) Granulats – Essai d’abrasivite’et de broyabilité. Association Francaise de Normalisation (NF P 18-579), Paris

    Google Scholar 

  • Bakar MA, Majeed Y, Rostami J (2016) Effects of rock water content on CERCHAR Abrasivity Index. Wear 368:132–145

    Article  Google Scholar 

  • Barzegari G, Uromeihy A, Zhao J (2015) Parametric study of soil abrasivity for predicting wear issue in TBM tunneling projects. Tunn Undergr Space Technol 48:43–57

    Article  Google Scholar 

  • Bilgin N, Copur H, Balci C (2012) Effect of replacing disc cutters with chisel tools on performance of a TBM in difficult ground conditions. Tunn Undergr Space Technol 27(1):41–51

    Article  Google Scholar 

  • Büchi E, Mathier JF, Wyss C (1995) Rock abrasivity – a significant cost factor for mechanical tunneling in loose and hard rock. Tunnel 5(95):38–44

    Google Scholar 

  • Deketh HJR (1995) Wear of rock cutting tools (Laboratory experiments on the abrasivity of rock). A.A. Balkema, Rotterdam

    Google Scholar 

  • Drucker P (2011) Validity of the LCPC abrasivity coefficient through the example of a recent Danube gravel. Geomech Tunnel 4(6):681–691

    Article  Google Scholar 

  • Düllmann J, Alber M, Plinninger RJ (2014) Determining soil abrasiveness by use of index tests versus using intrinsic soil parameters. Geomech Tunnel 7(1):87–97

    Article  Google Scholar 

  • Feinendegen M, Ziegler M (2018) Geomech Tunnel 11(2):113–122

    Article  Google Scholar 

  • Festl J (2006) The LCPC test ˗ a possibility to determine soil abrasivity? Bachelor thesis, Technische Universität München

  • Fowell RJ, Abu Bakar MZ (2007) A review of the Cerchar and LCPC rock abrasivity measurement methods. In Proceeding of the 11th Congress of the International Society for Rock Mechanics, pp 155-160

  • Gharahbagh EA, Rostami J, Ghasemi AR, Tonon F (2011) Review of rock abrasion testing. In Proceeding of the 45th US Rock Mechanics/Geomechanics Symposium pp 11-141

  • Gharahbagh EA, Rostami J, Talebi K (2014) Experimental study of the effect of conditioning on abrasive wear and torque requirement of full face tunneling machines. Tunn Undergr Space Technol 41:127–136

    Article  Google Scholar 

  • Ghasemi A (2010) Study of CERCHAR abrasivity index and potential modifications for more consistent measurement of rock abrasion. M.sc. Dissertation, Pennsylvania State University, USA

  • Gonzalez C, Arroyo M, Gens A (2015) Wear and abrasivity: observations from EPB drives in mixed soft ˗ rock sections. Geomech Tunnel 8(3):258–264

    Article  Google Scholar 

  • Hamzaban MT, Memarian H, Rostami J (2014) Continuous monitoring of pin tip wear and penetration into rock surface using a new Cerchar abrasivity testing device. Rock Mech Rock Eng 47:689–701. https://doi.org/10.1007/s00603-013-0397-4

  • Hashemnejad A, Ghafoori M, Azali ST (2015) Utilizing water, mineralogy and sedimentary properties to predict LCPC abrasivity coefficient. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-015-0799-9

  • Hashemnejad A, Ghafoori M, Lashkaripour G, Tariq Azali S (2012) Effect of geological parameters on soil abrasivity using LCPC machine for predicting LAC. Int J Emerg Technol Adv Eng 2(12):71–76

  • Ho YK, So STC, Lau TMF, Kwok RCM (2015) Abrasiveness of common rocks in Hong Kong. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-015-0873-0

  • Kahraman S, Fener M, Käsling H, Thuro K (2016) The influences of textural parameters of grains on the LCPC abrasivity of coarse-grained igneous rocks. Tunn Undergr Space Technol 58:216–223

    Article  Google Scholar 

  • Käsling H, & Thuro, K. (2010). Determining abrasivity of rock and soil in the laboratory. In 11th IAEG Congress, Auckland, New Zealand 235: 1973-1980

  • Köhler M, Maidl U, Martak L (2011) Abrasiveness and tool wear in shield tunneling insoil. Geomech Tunnel 4(1):36–53

    Article  Google Scholar 

  • Labas M, Krepelka F, Ivanicova L (2012) Assessment of abrasiveness for research of rock cutting. Acta Montan Slovaca 1:65–73

    Google Scholar 

  • Ma H, Yin L, Gong Q, Wang J (2015) TBM tunneling in mixed-face ground: Problems and solutions. Int J Min Sci Technol 25(4):641–647

    Article  Google Scholar 

  • Majeed Y, Abu Bakar MZ (2016) Statistical evaluation of CERCHAR Abrasivity Index (CAI) measurement methods and dependence on petrographic and mechanical properties of selected rocks of Pakistan. Bull Eng Geol Environ 75(3):1341–1360

  • Mostafaei M, Far AHR, Rastegarnia A (2018) Assessment of the impact of case parameters affecting abrasion and brittleness factors in alluviums of line 2 of theTabriz subway, Iran. Bulletin of Engineering Geology and the Environment 78:3851–3861

  • Nilsen B, Dahl F, Raleigh P, Holzhäuser J (2006) Abrasivity of soils in TBM tunneling, Tunnels and Tunnelling International, March pp.36-38

  • Nilsen B, Dahl F, Holzhäuser J, Raleigh P (2007) New test methodology for estimating the abrasiveness of soils for TBM tunneling. In Proceedings of the RETC pp.104-116

  • Perez S, Karakus M, Sepulveda E (2015) A preliminary study on the role of acoustic emission on inferring Cerchar abrasivity index of rocks using artificial neural network. Wear 344-345:1–8

    Article  Google Scholar 

  • Plinninger RJ (2002) Klassifizierung und Prognose von Werkzeugverschleiß bei konventionellen Gebirgslösungsverfahren im Festgestein. Münchner Geologische Hefte, Reihe B – Angewandte Geologie 17:147

    Google Scholar 

  • Plinninger RJ (2010) In: Williams et al (eds) Hardrock abrasivity investigation using the Rock Abrasivity Index (RAI). Taylor and Francis Group, London, pp 3445–3452

    Google Scholar 

  • Rostami J, Ozdemir L, Bruland A, Dahl F (2005) Review of issues related to Cerchar abrasivity testing and their implications on Geotechnical investigations and cutter cost estimates. In Proceedings of the Rapid Excavation and Tunneling Conference (RETC), Seattle, WA, USA, June, 2005, pp.738-751

  • Rostami J, Gharahbagh EA, Palomino AM, Mosleh M (2012) Development of soil abrasivity testing for soft ground tunneling using shield machines. Tunn Undergr Space Technol 28:245–256

    Article  Google Scholar 

  • Thuro K (2002) Geologisch-felsmechanische Grundlagen der Gebirgslösung im Tunnelbau. Münchner Geologische Hefte, B18. Eigenverlag, München

  • Thuro K, Käsling H (2009) Classification of the abrasiveness of soil and rock. Geomech Tunnel 2(2):179–188

  • Thuro K, Plinninger RJ (2003) Hard rock tunnel boring, cutting, drilling and blasting: rock parameters for excavatability. In proceedings of the 10th ISRM International Congress on Rock Mechanics, Johannesburg, South Africa pp. 1227-1234

  • Thuro K, Singer J, Käsling H, Bauer M (2006) Soil abrasivity assessment using the LCPC testing device. Felsbau 24:37–45

    Google Scholar 

  • Thuro K, Singer J, Käsling H, Bauer M (2007) Determining abrasivity with the LCPC test. In Proceedings of the 1st Canada-U.S. Rock Mechanics Symposium, Vancouver B.C

  • Tóth Á, Gong Q, Zhao J (2013) Case studies of TBM tunneling performance in rock–soil interface mixed ground. Tunn Undergr Space Technol 38:140–150

    Article  Google Scholar 

  • Uetz H (1986) Abrasion and erosion. Carl Hauser Verlag, München, p 829

    Google Scholar 

  • Verhoef PNW (1997) Wear of rock cutting tools (Implications for the site investigation of rock dredging projects). A.A. Balkema, Rotterdam

    Google Scholar 

  • West G (1981) A review of rock abrasiveness testing for tunnelling. In Proc. International Symposium on Weak Rock, Tokyo, 21-24 September, PP 585-594

  • Wilfing L, Käsling H, Goliasch R, Moritz B, Thuro K (2016) Penetration tests at the Koralm Tunnel (KAT2)–The right tool to improve penetration prediction in TBM tunneling? /Penetrationsversuche am Beispiel des Koralmtunnels (KAT2)–Ein Werkzeug zur Verbesserung von Penetrationsprognosen im maschinellen Tunnelbau? Geomech Tunnel 9(3):200–209

    Article  Google Scholar 

  • Yang Y, Wei Y, Zheng X, Su F, Li M, and Li F (2019) "Evaluation of cutting tool wear of earth pressure balance shield in granular soil based on laboratory test." Journal of Testing and Evaluation 47 (2):927-941. https://doi.org/10.1520/JTE20180402

  • Yarali O, Yasar E, Bacak G, Ranjith PG (2008) A study of rock abrasivity and tool wear in coal measures rocks. Int J Coal Geol 74:53–66

    Article  Google Scholar 

Download references

Funding

This study was funded by the Higher Education Commision, Pakistan with Grant No. 7396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Abu Bakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakar, M.Z.A., Zafar, Z. & Majeed, Y. Abrasiveness evaluation of selected river gravels of Pakistan using LCPC rock abrasivity test. Bull Eng Geol Environ 79, 2561–2577 (2020). https://doi.org/10.1007/s10064-019-01719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-019-01719-4

Keywords

Navigation