Skip to main content

Advertisement

Log in

Weak foliated rock slope stability analysis with ultra-close-range terrestrial digital photogrammetry

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

This paper presents a review of the data acquisition procedures of geotechnical parameters for rock slope stability assessment and the proposal of some new improvements. For this purpose, a piece of research based on the slope mass rating classification system using close-range terrestrial digital photogrammetry (CR-TDP) has led to improvements in quality and timing of discontinuity data acquisition, and analyzes the suitability of each one of the parameters when applied to weak foliated rocks. TDP allows rapid 3D image acquisition of a rock slope, which can be analyzed using software to determine the geometrical parameters that affect stability. A fast procedure to perform the photogrammetric, non-contact survey in order to obtain the 3D images is shown in this paper. Being a rapid and single-person task, this procedure provides enough precision to be applied to weak foliated rock slopes with non-well-defined geometry. Furthermore, the study has focused on highly foliated rock outcrops, in which high resolution in the 3D images is very desirable. This research was applied to mountain road cuts, in which the use of TDP with a very close range was necessary. Through an application on weak rocks in the Alpujarras (Andalusia, Spain), this work analyzes the bias when applying TDP to materials such as these, under progressive weathering processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Admassu Y, Shakoor A (2013) Cut slope design recommendations for sub-horizontal sedimentary rock units in Ohio, USA. Geotech Geol Eng 31(4):1207–1219. doi:10.1007/s10706-013-9644-4

    Article  Google Scholar 

  • Aguilar MA, Aguilar FJ, Negreiros J (2009) Off-the-shelf laser scanning and close-range digital photogrammetry for measuring agricultural soils. Biosyst Eng 103:504–517. doi:10.1016/j.biosystemseng.2009.02.010

    Article  Google Scholar 

  • Alameda-Hernández P, Jiménez-Perálvarez J, Palenzuela JA, El Hamdouni R, Irigaray C, Cabrerizo MA, Chacón J (2014) Improvement of the JRC calculation using different parameters obtained through a new survey method applied to rock discontinuities. Rock Mech Rock Eng 47(6):2047–2060. doi:10.1007/s00603-013-0532-2

    Article  Google Scholar 

  • Alcántara-Ayala I (1999) The Torvizcón, Spain, landslide of February 1996: the role of lithology in a semi-arid climate. Geofísica Internacional 38:3–10

  • Aldaya F (1979) Mapa Geológico De España, Escala 1:50.000. IGME, Madrid

  • Barbetti I, Felici A, Magrini D, Manganelli del Fa R, Riminesi C (2013) Ultra close-range photogrammetry to assess the roughness of the wall painting surfaces after cleaning treatments. Int J Conserv Sci 4:525–534

    Google Scholar 

  • Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech Rock Eng 10:1–54

    Article  Google Scholar 

  • Barton N, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech Rock Eng 6:189–236

    Article  Google Scholar 

  • Bieniawski ZT (1973) Engineering classification of jointed rock masses. Civil Eng S Afr 15:335–344

    Google Scholar 

  • Bieniawski ZT (1989) Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. Wiley, New York

  • Birch JS (2006) Using 3DM analyst mine mapping suite for rock face characterisation. Workshop: laser and photogrammetric methods for rock face characterization, Golden, Colorado, USA, pp 13–32

  • Bracci S, Cuzman OA, Ignesti A, Manganelli del Fa R, Olmi R, Pallecchi P, Riminesi C, Tiano P (2013) Multidisciplinary approach for the conservation of an etruscan hypogean monument. Eur J Sci Theol 9(2):91–106

    Google Scholar 

  • Buyer A, Schubert W (2016) Extraction of discontinuity orientations in point clouds. Rock Mechanics and Rock Engineering: From the Past to the Future 2:1133–1138. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85001577029&partnerID=40&md5=b189a0507d75cf7b96241bbde36f053b

  • Cacciari PP, Futai MM (2016) Mapping and characterization of rock discontinuities in a tunnel using 3D terrestrial laser scanning. Bull Eng Geol Environ 75(1):223–237. doi:10.1007/s10064-015-0748-3

    Article  Google Scholar 

  • Chesley JT, Leier AL, White S, Torres R (2017) Using unmanned aerial vehicles and structure-from-motion photogrammetry to characterize sedimentary outcrops: an example from the Morrison Formation, Utah, USA. Sediment Geol 354(1):1–8. doi:10.1016/j.sedgeo.2017.03.013

    Article  Google Scholar 

  • Choi SY, Park HD (2004) Variation of rock quality designation (RQD) with scanline orientation and length: a case study in Korea. Int J Rock Mech Min Sci 41:207–221. doi:10.1016/S1365-1609(03)00091-1

    Article  Google Scholar 

  • De Vita P, Cevasco A, Cavallo C (2012) Detailed rock failure susceptibility mapping in steep rocky coasts by means of non-contact geostructural surveys: the case study of the Tigullio Gulf (Eastern Liguria, Northern Italy). Nat Hazards Earth Syst Sci 12:867–880. doi:10.5194/nhess-12-867-2012

    Article  Google Scholar 

  • Deere DU (1963) Technical description of rock cores for engineering purposes. Rock Mech Eng Geol 1:17–22

    Google Scholar 

  • Ferrero A, Forlani G, Roncella R, Voyat H (2009) Advanced geostructural survey methods applied to rock mass characterization. Rock Mech Rock Eng 42:631–665

    Article  Google Scholar 

  • Ferrero A, Migliazza M, Roncella R, Rabbi E (2011) Rock slopes risk assessment based on advanced geostructural survey techniques. Landslides 8:221–231

    Article  Google Scholar 

  • Firpo G, Salvini R, Francioni M, Ranjith PG (2011) Use of digital terrestrial photogrammetry in rocky slope stability analysis by distinct elements numerical methods. Int J Rock Mech Min Sci 48:1045–1054. doi:10.1016/j.ijrmms.2011.07.007

    Article  Google Scholar 

  • Francioni M, Salvini R, Stead D, Giovannini R, Riccucci S, Vanneschi C, Gullì D (2015) An integrated remote sensing-GIS approach for the analysis of an open pit in the Carrara Marble District, Italy: slope stability assessment through kinematic and numerical methods. Comput Geotech 67:46–63. doi:10.1016/j.compgeo.2015.02.009

    Article  Google Scholar 

  • Gaich A, Pötsch M, Shubert W (2006) Basics and application of 3D imaging systems with conventional and high-resolution cameras. Laser and photogrammetric methods for rock face characterization, Golden, Colorado, USA, pp 33–48

  • Haneberg WC (2006) 3-D rock mass characterization using terrestrial digital photogrammetry. AEG News 49:12–15

    Google Scholar 

  • Haneberg WC (2008) Using close range terrestrial digital photogrammetry for 3-D rock slope modeling and discontinuity mapping in the United States. Bull Eng Geol Environ 67:457–469. doi:10.1007/s10064-008-0157-y

    Article  Google Scholar 

  • Harrison JP (1999) Selection of the threshold value in RQD assessments. Int J Rock Mech Min Sci 36:673–685. doi:10.1016/S0148-9062(99)00035-2

    Article  Google Scholar 

  • Hoek E (1994) Strength of rock and rock masses. ISRM News 2:4–16

    Google Scholar 

  • Hoek E, Marinos P, Benissi M (1998) Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist formation. Bull Eng Geol Environ 57:151–160

    Article  Google Scholar 

  • Irigaray C, Fernández T, Chacón J (2003) Preliminary rock-slope-susceptibility assessment using GIS and the SMR classification. Nat Hazards 30:309–324

    Article  Google Scholar 

  • Irigaray C, El Hamdouni R, Jiménez-Perálvarez JD, Fernández P, Chacón J (2012) Spatial stability of slope cuts in rock massifs using GIS technology and probabilistic analysis. Bull Eng Geol Environ 71:569–578

    Article  Google Scholar 

  • ISRM (1978) International Society for Rock Mechanics commission on standardization of laboratory and field tests: suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 15:319–368. doi:10.1016/0148-9062(78)91472-9

    Article  Google Scholar 

  • James MR, Robson S (2012) Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application. J Geophys Res. doi:10.1029/2011JF002289

    Google Scholar 

  • Kim DH, Gratchev I, Balasubramaniam A (2013) Determination of joint roughness coefficient (JRC) for slope stability analysis: a case study from the Gold Coast area, Australia. Landslides 10:657–664. doi:10.1007/s10346-013-0410-8

    Article  Google Scholar 

  • Kim DH, Poropat G, Gratchev I et al (2016) Assessment of the accuracy of close distance photogrammetric JRC data. Rock Mech Rock Eng 49(11):4285–4301. doi:10.1007/s00603-016-1042-9

    Article  Google Scholar 

  • Krosley L, Schaffner P (2003) Applications and accuracy of photogrammetry for geological and geotechnical data collecting. Annal Meeting Abstracts, Vail

    Google Scholar 

  • Kulatilake PHSW, Shou G, Huang TH, Morgan RM (1995) New peak shear strength criteria for anisotropic rock joints. Int J Rock Mech Min Sci Geomech Abstr 32:673–697. doi:10.1016/0148-9062(95)00022-9

    Article  Google Scholar 

  • Marinos P, Hoek E (2000) GSI: a geologically friendly tool for rock mass strength estimation. In: GeoEng2000 Conference, Melbourne, pp 1422–1442

  • Menéndez-Díaz A, Argüelles-Fraga R, García-Cortés S et al (2016) Stability analysis of a tunnel using LIDAR data and the keyblock method. Bull Eng Geol Environ 75(2):469–483. doi:10.1007/s10064-015-0761-6

    Article  Google Scholar 

  • Miller RP (1965) Engineering classification and index properties for intact rock. Ph.D. Thesis, Univ. of Illinois

  • Moon V, Russell G, Stewart M (2001) The value of rock mass classification systems for weak rock masses: a case example from Huntly, New Zealand. Eng Geol 61:53–67. doi:10.1016/S0013-7952(01)00024-2

    Article  Google Scholar 

  • Niederheiser R, Mokros M, Lange J, Petschko H, Prasicek G, Elberink SO (2016) Deriving 3d point clouds from terrestrial photographs—comparison of different sensors and software. Int Arch Photogramm Remote Sens Spat Inf Sci XLI(B5):685–692. doi:10.5194/isprsarchives-XLI-B5-685-2016

    Article  Google Scholar 

  • Olivier RJ (1976) Determination of RQD from petroscope obsevations. In: Expl. Rock Eng., Johannesborg, Balkema, Cape Town, pp 63–68

  • Palmström A (1974) Characterization of jointing density and the quality of rock masses. Internal report, A. B. Berdal, Norway

  • Palmström A (2005) Measurements of and correlations between block size and rock quality designation (RQD). Tunn Undergr Space Technol 20:362–377. doi:10.1016/j.tust.2005.01.005

    Article  Google Scholar 

  • Palmström A, Broch E (2005) Use and misuse of rock mass classification systems with particular reference to the Q-system. Tunn Undergr Space Technol 21:575–593. doi:10.1016/j.tust.2005.10.005

    Article  Google Scholar 

  • Pantelidis L (2009) Rock slope stability assessment through rock mass classification systems. Int J Rock Mech Min Sci 46:315–325. doi:10.1016/j.ijrmms.2008.06.003

    Article  Google Scholar 

  • Pate K, Haneberg WC (2011) Photogrammetric and LiDAR 3-D rock slope discontinuity mapping and interpretation surveys to improve baseline information for supporting design and construction of capital improvement projects at hydroelectric facilities. In: 45th US rock mechanics/geomechanics symposium, San Francisco, CA, USA

  • Priest SD, Hudson JA (1976) Discontinuity spacings in rock. Int J Rock Mech Min Sci Geomech Abstr 13:135–148. doi:10.1016/0148-9062(76)90818-4

    Article  Google Scholar 

  • Remondino F, Spera MG, Nocerino E, Menna F, Nex F (2014) State of the art in high density image matching. Photogram Rec 29:144–166. doi:10.1111/phor.12063

    Article  Google Scholar 

  • Rescic S, Tiano P, Fratini F, Manganelli del Fà R (2012) The micro-sandblasting technique as a new tool for the evaluation of the state of conservation of natural stone and mortar surfaces. Eur J Environ Civil Eng 17(2):113–127. doi:10.1080/19648189.2012.751227

    Article  Google Scholar 

  • Riquelme AJ, Abellán A, Tomás R, Jaboyedoff M (2014) A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput Geosci 68:38–52. doi:10.1016/j.cageo.2014.03.014

    Article  Google Scholar 

  • Riquelme AJ, Abellán A, Tomás R (2015) Discontinuity spacing analysis in rock masses using 3D point clouds. Eng Geol 195:185–195. doi:10.1016/j.enggeo.2015.06.009

    Article  Google Scholar 

  • Riquelme AJ, Tomás R, Abellán A (2016) Characterization of rock slopes through slope mass rating using 3D point clouds. Int J Rock Mech Min Sci 84:165–176. doi:10.1016/j.ijrmms.2015.12.008

    Article  Google Scholar 

  • Romana M (1985) New adjustments ratings for application of Bieniawski classification to slopes. In: Int. symp. on the role of rock mechanics, Zacatecas, pp 49–53

  • Romana M (1993) A geomechanical classification for slopes: slope mass rating. In: Hudson JA (ed) Comprehensive rock engineering. Imperial College, Pergamon Press, Oxford

    Google Scholar 

  • Romana M (1997). El papel de las clasificaciones geomecánicas en el estudio de la estabilidad de taludes. IV Simposio Nacional Sobre Taludes Y Laderas Inestables, Granada, Spain, pp 955–1011

  • Roncella R, Forlani G, Remondino F (2005) Photogrammetry for geological applications: automatic retrieval of discontinuity orientation in rock slopes. SPIE: Videometrics VIII, San Jose, pp 17–27

    Google Scholar 

  • Salvini R, Francioni M (2013) Geomatics for slope stability and rock fall runout analysis: a case study along the alta tambura road in the Apuan Alps (Tuscany, Italy). Ital J Eng Geol Environ 6(5):481–492

    Google Scholar 

  • Salvini R, Francioni M, Riccucci S, Fantozzi P, Bonciani F, Mancini S (2011) Stability analysis of Grotta delle Felci Cliff (Capri Island, Italy): structural, engineering-geological, photogrammetric surveys and laser scanning. Bull Eng Geol Env 70:549–557

    Article  Google Scholar 

  • Sen Z, Kazi A (1984) Discontinuity spacing and RQD estimates from finite length scanlines. Int J Rock Mech Min Sci Geomech Abstr 21:203–212. doi:10.1016/0148-9062(84)90797-6

    Article  Google Scholar 

  • Singh RK, Goel B (1999) Rock mass classification. A practical approach in civil engineering. Elsevier, Oxford

    Google Scholar 

  • Sturzenegger M, Stead D (2009) Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Nat Hazards Earth Syst Sci 9:267–287. doi:10.5194/nhess-9-267-2009

    Article  Google Scholar 

  • Sturzenegger M, Stead D, Beveridge A, Lee S, van As A (2009) Long-range terrestrial digital photogrammetry for discontinuity characterization at Palabora open-pit mine. In: CANUS Rock Mechanics Symposium, Toronto

  • Tatone BSA, Grasselli G (2010) A new 2D discontinuity roughness parameter and its correlation with JRC. Int J Rock Mech Min Sci 47:1391–1400. doi:10.1016/j.ijrmms.2010.06.006

    Article  Google Scholar 

  • Terzaghi K (1946) Rock defects and load on tunnel supports, introduction to rock tunneling with steel supports. Commercial Shearing & Stamping Co., Youngstown

    Google Scholar 

  • Thoeni K, Giacomini A, Murtagh R, Kniest E (2014) A comparison of multi-view 3D reconstruction of a rock wall using several cameras and a laser scanner. In: International archives of the photogrammetry, remote sensing and spatial information sciences—ISPRS technical commission v symposium XL-5, pp 573–580. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924275594&doi=10.5194%2fisprsarchives-XL-5-573-2014&partnerID=40&md5=03ca964df99b45865ebdb884ea348cf1

  • Tomás R, Delgado J, Serón JB (2007) Modification of slope mass rating (SMR) by continuous functions. Int J Rock Mech Min Sci 44:1062–1069. doi:10.1016/j.ijrmms.2007.02.004

    Article  Google Scholar 

  • Tse R, Cruden DM (1979) Estimating joint roughness coefficients. Int J Rock Mech Min Sci Geomech Abstr 16:303–307. doi:10.1016/0148-9062(79)90241-9

    Article  Google Scholar 

  • Ulusay RH, Hudson JA (eds) (2007) The complete ISRM suggested methods for rock characterisation, testing and monitoring: 1974–2006. ISRM & Turkish National Group of ISRM, Ankara, Turkey

  • Viana CD, Endlein A, da Cruz Campanha GA, Grohmann CH (2016) Algorithms for extraction of structural attitudes from 3D outcrop models. Comput Geosci 90:112–122. doi:10.1016/j.cageo.2016.02.017

    Article  Google Scholar 

  • Wolter A, Stead D, Clague JJ (2014) A morphologic characterisation of the 1963 Vajont Slide, Italy, using long-range terrestrial photogrammetry. Geomorphology 206:147–164. doi:10.1016/j.geomorph.2013.10.006

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the research group ‘Grupo de Investigaciones Medioambientales: Riesgos Geológicos e Ingeniería del Terreno.’ And the foundings by the ‘Ministerio de Educación y Ciencia’ (Spanish government) for the research project ‘Desarrollo de técnicas para la regionalización de la peligrosidad de movimientos de ladera en la cuenca del río Genil y la cuenca Sur (Adra-Nerja) de la Cordillera Bética’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Alameda-Hernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alameda-Hernández, P., El Hamdouni, R., Irigaray, C. et al. Weak foliated rock slope stability analysis with ultra-close-range terrestrial digital photogrammetry. Bull Eng Geol Environ 78, 1157–1171 (2019). https://doi.org/10.1007/s10064-017-1119-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-017-1119-z

Keywords

Navigation