Skip to main content
Log in

Using non-destructive tests for estimating uniaxial compressive strength and static Young’s modulus of carbonate rocks via some modeling techniques

  • Original Article
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Prediction of elastic mechanical properties such as uniaxial compressive strength (UCS) and static Young’s modulus (E s) is one of the main purposes of studies in geological, geotechnical, geophysical, petroleum, and rock engineering projects. The UCS test is applied to determine them. However, this test is destructive, expensive, time-consuming, and requires high-quality samples. Therefore, using indirect methods seems to be indispensable for estimating dynamic elastic properties. Consequently, the main intention of this study was to predict the relationship between UCS and E s with dynamic poisson ratio (ϑ d) and dynamic Young’s modulus (E d), using simple and multivariate regression analysis (SRA and MRA), an artificial neural network (ANN), and support vector regression (SVR), and to compare and evaluate these methods with each other. For this purpose, different intact limestone rock samples of Asmari formation (ranged from limestone to marl) were collected from five different dam sites located in the southwest of Iran. Following regression analysis, the best equations for estimating UCS and E s of these samples with high and acceptable accuracy in terms of coefficient of determination (R 2) and root mean square error (RMSE) are suggested. These equations are simple, practical, and accurate enough to apply for prediction purposes at preliminary design stages. Although ANN and SVR models are both powerful techniques, the SVR run time is considerably faster. Besides, when cocmparing the three models used, the SVR model was found more desirable and advantageous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7a,b
Fig. 8

Similar content being viewed by others

References

  • Abbaszadeh Shahri A, Larsson S, Johansson F (2016) Updated relations for the uniaxial compressive strength of marlstones based on P-wave velocity and point load index test. Innov Infrastruct Solut 1:17. doi:10.1007/s41062-016-0016-9

    Article  Google Scholar 

  • Ameen MS, Smart BGD, Somerville JMC, Hammilton S, Naji NA (2009) Predicting rock mechanical properties of carbonates from wireline logs (a case study: arab-Dreservoir, Ghawar field, Saudi Arabia). Mar Pet Geol 26(4):430–444. doi:10.1016/j.marpetgeo.2009.01.017

    Article  Google Scholar 

  • ASTM (American Society for Testing and Materials) (1984) Annual book of ASTM standards 4.08. ASTM, Philadelphia, PA

  • Atkinson PM, Tatnall ARL (1997) Neural networks in remote sensing. Int J Remote Sens 18:699–709. doi:10.1080/014311697218700

    Article  Google Scholar 

  • Azimian A, Ajalloeian R (2015) Empirical correlation of physical and mechanical properties of marly rocks with P wave velocity. Arab J Geosci 8:2069–2079. doi:10.1007/s12517-013-1235-4

    Article  Google Scholar 

  • Baheer I (2000) Selection of methodology for modeling hysteresis behavior of soils using neural networks. J Comput Aid Civil Infrastruct Eng 5(6):445–463. doi:10.1111/0885-9507.00206

    Article  Google Scholar 

  • Ceryan N, Kesimal A, Okkan U (2013) Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks. Environ Earth Sci 68:807–819. doi:10.1007/s12665-012-1783-z

    Article  Google Scholar 

  • Chapelle O, Vapnik V (1999) Model selection for support vector machines. In: Advances in neural information processing systems, vol 12. MIT Press, Cambridge, MA

  • Cobanoglu I, Celik SB (2008) Estimation of uniaxial compressive strength from point load strength, schmidt hardness and P-wave velocity. Bull Eng Geol Env 67:491–498. doi:10.1007/s10064-008-0158-x

    Article  Google Scholar 

  • Cohen J, Cohen PG, West SS, Aiken L (2002) Applied multiple regression/correlation analysis for the behavioral sciences, 3rd edn. Routledge, London

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297. doi:10.1007/BF00994018

    Article  Google Scholar 

  • Garson GD (2014) Multiple regression. Statistical Associates Publishers. http://www.statisticalassociates.com/

  • Diamantis K, Bellas S, Migiros G, Gartzos E (2011) Correlating wave velocities with physical, mechanical properties and petrographic characteristics of peridotites from the Central Greece. Geotech Geol Eng 29:1049–1062. doi:10.1007/s10706-011-9436-7

    Article  Google Scholar 

  • Dincer I, Acar A, Ural S (2008) Estimation of strength and deformation properties of quaternary Caliche deposits. Bull Eng Geol Env 67:353–366. doi:10.1007/s10064-008-0146-1

    Article  Google Scholar 

  • Eissa EA, Kazi A (1988) Relation between static and dynamic Young’s moduli of rocks. Int J Rock Mech Min Sci Geomech Abstr 25(6):479–482. doi:10.1016/0148-9062(88)90987-4

    Article  Google Scholar 

  • Freyburg E (1972) Der untere und mittlere buntsandstein SWT huringen in seinen gesteins technicschen engenschaften. Ber Dtsch Ges Geol Wiss 176:911–919

    Google Scholar 

  • Garagon M, Can T (2010) Prediction the strength anisotropy in uniaxial compressive of some laminated sandstone using multivariate regression analysis. Mater Struct 43:509–517. doi:10.1617/s11527-009-9507-x

    Article  Google Scholar 

  • Ghazvinian A, Rasouli V, Nourani Asl R (2007) Application of multiple statistic methods in estimation of uniaxial compressive strength of intact rocks using indirect tests, 3rd edn. Rock Mech Congress, Tehran

    Google Scholar 

  • Gordan B, Jahed Armaghani D, Hajihassani M, Monjezi M (2015) Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Eng Comput. doi:10.1007/s00366-015-0400-7

    Article  Google Scholar 

  • Ham F, Kostanic I (2001) Principles of neurocomputing for science and engineering. McGraw-Hill, New York

    Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation. MacMillan, New York

    Google Scholar 

  • Hecht-Nielsen R (1987) Kolmogorov’s mapping neural network existence theorem. In: Proceeding of the first IEEE Int Conference on Neural Networks, San Diego pp 11–14. doi: 10.1155/2012/237693

    Article  Google Scholar 

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feed forward networks are universal approximators. Neural Network 2:359–366. doi:10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  • Horsrud P (2001) Estimating mechanical properties of shale from empirical correlations. SPE Drill Complet 16:68–73. doi:10.2118/56017-PA

    Article  Google Scholar 

  • Hunter D, Yu H, Pukish MS III, Kolbusz J, Wilamowski BM (2012) Selection of proper neural network sizes and architectures: a comparative study. IEEE Trans Industr Inf 8:228–240. doi:10.1109/TII.2012.2187914

    Article  Google Scholar 

  • Hush DR (1989) Classification with neural networks: a performance analysis. In: Proceedings of the IEEE international conference on systems Engineering Dayton, Ohio, pp 277–280. doi: 10.1109/ICSYSE.1989.48672

  • Hyndman Rob J, Koehler Anne B (2006) Another look at measures of forecast accuracy. Int J Forecast 22(4):679–688. doi:10.1016/j.ijforecast.2006.03.001

    Article  Google Scholar 

  • Iran Water and Power Resources Development Company (IWPCO) (2003) Rock mechanic studies report of Karun 4 dam and power plant. Ministry of Energy, Tehran

    Google Scholar 

  • Iran Water and Power Resources Development Company (IWPCO) (2007) Rock mechanic studies report of Seymareh dam and power plant. Ministry of Energy, Tehran

    Google Scholar 

  • Iran Water and Power Resources Development Company (IWPCO) (2008a) Rock mechanic studies report of Khersan 1 dam and power plant. Ministry of Energy, Tehran

    Google Scholar 

  • Iran Water and Power Resources Development Company (IWPCO) (2008b) Rock mechanic studies report of Khersan 3 dam and power plant. Ministry of Energy, Tehran

    Google Scholar 

  • Iran Water and Power Resources Development Company (IWPCO) (2009) Rock mechanic studies report of Illam dam and pump storage power plant. Ministry of Energy, Tehran

    Google Scholar 

  • IRSM (International Society for Rock Mechanics) (1981) Rock characterization, testing and monitoring. Pergamon, Oxford

    Google Scholar 

  • Jahed Armaghani D, Tonnizam Mohamad E, Momeni E, Narayanasamy MS, Mohd Amin MF (2015) An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bull Eng Geol Environ 74:1301–1319. doi:10.1007/s10064-014-0687-4

    Article  Google Scholar 

  • Jahed Armaghani D, Mohd Amin MF, Yagiz S, Shirani Faradonbeh R, Abdullah Asinda (2016) Prediction of the uniaxial compressive strength of sandstone using various modeling techniques. Int J Rock Mech Min Sci 85:174–186. doi:10.1016/j.ijrmms.2016.03.018

    Article  Google Scholar 

  • Kahraman S (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 38:981–994. doi:10.1016/s1365-1609(01)00039-9

    Article  Google Scholar 

  • Kanellopoulas I, Wilkinson GG (1997) Strategies and best practice for neural network image classification. Int J Remote Sensing 18:711–725. doi:10.1080/014311697218719

    Article  Google Scholar 

  • Khandelwal M (2013) Correlating P-Wave velocity with the physico-mechanical properties of different rocks. Pure Appl Geophys 170:507–514. doi:10.1007/s00024-012-0556-7

    Article  Google Scholar 

  • Kilic A, Teymen A (2008) Determination of mechanical properties of rocks using simple methods. Bull Eng Geol Environ 67:237–244. doi:10.1007/s10064-008-0128-3

    Article  Google Scholar 

  • King MS (1983) Static and dynamic elastic properties of rocks from the Canadian shield. Int J Rock Mech Min Sci Geomech Abstr 20:237–241. doi:10.1016/0148-9062(83)90004-9

    Article  Google Scholar 

  • Lacy LL (1997) Dynamic rock mechanics testing for optimized fracture designs. SPE Paper 387 SPE Annual Technical Conference and Exhibition, 5–8 October, San Antonio, TX

  • Lippmann RP (1987) An introduction to computing with neural nets. IEEE ASSP Mag 4:4–22. doi:10.1109/MASSP.1987.1165576

    Article  Google Scholar 

  • Masters T (1994) Practical neural network recipes in C++. Academic, Boston

    Google Scholar 

  • Meulenkamp F, Grima MA (1999) Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness. Int J Rock Mechanics Mining Sci 36:29–39

    Article  Google Scholar 

  • Minaeian B, Ahangari K (2013) Estimation of uniaxial compressive strength based on P-Wave and Schmidt hammer rebound using statistical method. Arab J Geosci 6:1925–1931. doi:10.1007/s12517-011-0460-y

    Article  Google Scholar 

  • Montgomery DC, Peck EA, Vining GG (2006) Introduction to linear regression analysis. Wiley, New York

    Google Scholar 

  • Moos D, Peska M, Finkbeiner P, Zoback M (2003) Comprehensive Wellbore stability analysis utilizing quantitative risk assessment. J Pet Sci Eng 38:97–110. doi:10.1016/S0920-4105(03)00024-X

    Article  Google Scholar 

  • Moradian ZA, Behnia M (2009) Predicting the uniaxial compressive strength and static young’ s modulus of intact sedimentary rocks using the ultrasonic test. Int J Geomech 9:1–14. doi:10.1061/(ASCE)1532-3641(2009)9:1(14)

    Article  Google Scholar 

  • Najibi AR, Ghafoori M, Lashkaripour GhR, Asef MR (2015) Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestone, two main oil reservoirs in Iran. J Pet Sci Eng 126:78–82. doi:10.1016/j.petrol.2014.12.010

    Article  Google Scholar 

  • Ohen HA (2003) Calibrated wireline mechanical rock properties method for predicting and preventing wellbore collapse and sanding. doi:10.2118/82236-MS

    Article  Google Scholar 

  • Okkan U, Serbes ZA (2013) The combined use of wavelet transform and black box models in reservoir inflow modeling. J Hydrol Hydromech 61(2):112–119. doi:10.2478/johh-2013-0015

    Article  Google Scholar 

  • Paola JD (1994) Neural network classification of multispectral imagery. MSc thesis, University of Arizona

  • Pearson K (1908) On the generalized probable error in multiple normal correlation. Biometrika 6:59–68. doi:10.1093/biomet/6.1.59

    Article  Google Scholar 

  • Ripley BD (1993) Statistical aspects of neural networks. In: Barndoff-Neilsen OE, Jensen JL, Kendall WS (eds) Networks and chaos-statistical and probabilistic aspects. Chapman and Hall, London, pp 40–123. doi:10.1007/978-1-4899-3099-6_2

    Chapter  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representation by error propogation. In: Rumelhart DE, McClelland JL (eds). Parallel distributed processing vol 1. MIT Press, Cambridge, MA, pp 318–362

  • Shalabi F, Cording EJ, Al-Hattamleh OH (2007) Estimation of rock engineering properties using hardness tests. Eng Geol 90:138–147. doi:10.1016/j.enggeo.2006.12.006

    Article  Google Scholar 

  • Sharma PK, Singh TN (2008) A correlation between P-Wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull Eng Geol Env 67:17–22. doi:10.1007/s10064-007-0109-y

    Article  Google Scholar 

  • Shibata K, Ikeda Y (2009) Effect of number of hidden neurons on learning in large-scale layered neural networks. In: Proceedings of the ICROS-SICE International Joint Conference (ICCAS-SICE ‘09), pp 5008–5013

  • Sonmez H, Gokceoglu C, Nefeslioglu HA, Kayabasi A (2006) Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. Int J Rock Mech Min Sci 43(2):224–235. doi:10.1016/j.ijrmms.2005.06.007

    Article  Google Scholar 

  • Starzec P (1999) Dynamic elastic properties of crystalline rocks from south-west Sweden. Int J Rock Mech Min Sci 36:265–272. doi:10.1016/S0148-9062(99)00011-X

    Article  Google Scholar 

  • Tonizam Mohamad E, Armaghani DJ, Momeni E, Alavai Nezhad V (2014) Prediction of unconfined compressive strength of soft rocks: a PSO-based ANN approach. Bull Eng Geol Environ. doi:10.1007/s10064-014-0638-0

    Article  Google Scholar 

  • Vutukuri VS, Lama RD, Saluja SS (1978) Handbook on mechanical properties of rocks. Test Tech Results 2:242–252

    Google Scholar 

  • Wang C (1994) A theory of generalization in learning machines with neural application. PhD thesis, University of Pennsylvania

  • Yagiz S (2009a) P-wave velocity test for the assessment of some geotechnical properties of rock materials. Bull Mat Sci 34:947–953. doi:10.1007/s12034-011-0220-3

    Article  Google Scholar 

  • Yagiz S (2009b) Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer. Bull Eng Geol Environ 68(1):55–63. doi:10.1007/s10064-008-0172-z

    Article  Google Scholar 

  • Yagiz S, Gokceoglu C, Sezer E, Iplikci S (2000) Application of two non-linear prediction tools to the estimation of tunnel boring machine performance. Eng Appl Artif Intell 22(4):808–814. doi:10.1016/j.engappai.2009.03.007

    Article  Google Scholar 

  • Yagiz S, Sezer EA, Gokceoglu C (2012) Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. Int J Numer Anal Met 36:1636–1650. doi:10.1002/nag.1066

    Article  Google Scholar 

  • Yasar E, Erdogan Y (2004) Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. Int J Rock Mech Min Sci 41:871–875. doi:10.1016/j.ijrmms.2004.01.012

    Article  Google Scholar 

  • Yilmaz I, Yuksek AG (2008) An example of artificial neural network (ANN) application for indirect estimation of rock parameters. Rock Mech Rock Eng 41(5):781–795. doi:10.1007/s00603-007-0138-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shekoufeh Aboutaleb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboutaleb, S., Behnia, M., Bagherpour, R. et al. Using non-destructive tests for estimating uniaxial compressive strength and static Young’s modulus of carbonate rocks via some modeling techniques. Bull Eng Geol Environ 77, 1717–1728 (2018). https://doi.org/10.1007/s10064-017-1043-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-017-1043-2

Keywords

Navigation