Skip to main content
Log in

Combined effects of blasting and geological structure on rock mass stability—a case study from the Marrakech–Agadir highway, Morocco

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The Marrakech–Agadir highway crosses mountainous areas of the Western High Atlas of Morocco with a high risk of slope instability. The use of explosives as an excavation method, especially at kilometric point 33 on the Imintanout–Argana section, has triggered major ruptures. The regional geological setting, together with the lithological and structural characteristics of the rock mass, represent the major factors influencing this operation where the degree of disturbance is estimated as 0.82. The studied slope is located along the trajectory of a submeridian fault corridor remobilised because of blasting during excavation works. This slope reveals instabilities associated with tectonic planes (F1 and F2) and/or bedding (S0) and the presence of argillites and siltstones that coincide with bedding. These unconsolidated layers, inclined in the direction of excavation, act as slide planes. Structurally, the Pk33 slope can be subdivided into three zones depending on the displacement type being recorded and may be a fortiori related to the geomechanical properties of the substrate. The rheological characteristics of zones B and C, highly fractured and with low competence, respectively, explain their relatively different displacement patterns from that of zone A. The maximum instantaneous explosive load used for offloading the upper part of the sliding mass has been estimated in order to increase the safety factor for the instable slope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Cojean R (2003) Les processus de déformation et rupture des versants instables. Rôle des structures géologiques, des matériaux et des conditions hydrauliques. Apports et limites de la modélisation dans l’analyse de scénarios d’événements. Dissertation (Habilitation à diriger des recherches), University of Marne la Vallée (France)

  • Delille F (2012) Recherche d’une prédiction de fragmentation charge par charge pour les tirs à ciel ouvert. Dissertation (PhD thesis), Ecole Nationale Supérieure des Mines de Paris

  • Dowding CH (1985) Blast vibration, monitoring and control. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Duffaud F, Brun L, Plauchut B (1966) Le bassin du Sud-Ouest marocain. In: Reyere D (ed) Bassins sedimentaires du littoral africain. Publication de L’Association Services Géologiques Africains, Paris, pp 5–26

    Google Scholar 

  • Gaillard C, Panigoni T (2012) Influence du terrain dans la propagation des vibrations. Géotechnique Francophone. JNGG’2012, Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, Bordeaux, 4 au 6 juillet 2012, p 8. http://www.geotech-fr.org/sites/default/files/congres/jngg/JNGG-2012-99.pdf. Accessed 27 July 2015

  • González-Nicieza C, Álvarez-Fernandez MI, Alvarez-Vigil AE, Arias-Prieto D, López-Gayarre F, Ramos-Lopez FL (2014) Influence of depth and geological structure on the transmission of blast vibrations. Bull Eng Geol Environ 73:1211–1223. doi:10.1007/s10064-014-0595-7

    Article  Google Scholar 

  • Görgülü K, Arpaz E, Demirci A, Kocaslan A, Dilmac MK, Yüksek AG (2013) Investigation of blast-induced ground vibrations in the Tülü boron open pit mine. Bull Eng Geol Environ 72:555–564. doi:10.1007/s10064-013-0521-4

    Article  Google Scholar 

  • Hajihassani M, Armaghani DJ, Marto A, Mohamad ET (2015) Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm. Bull Eng Geol Environ 74:873–886. doi:10.1007/s10064-014-0657-x

    Article  Google Scholar 

  • Hoek E (2007) Practical rock engineering. Hoek’s corner in Rocscience web. https://www.rocscience.com/learning/hoek-s-corner/books. Accessed 27 July 2015

  • Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34:1165–1186. doi:10.1016/S1365-1609(97)80069-X

    Article  Google Scholar 

  • Hoek E, Carranza-Torres C, Corkum B (2002) Hoek–Brown failure criterion-2002 edition. Proc NARMS-Tac Conf Tor 1:267–273

    Google Scholar 

  • Li AJ, Merifield RS, Lyamin AV (2011) Effect of rock mass disturbance on the stability of rock slopes using the Hoek–Brown failure criterion. Comput Geotech 38:546–558

    Article  Google Scholar 

  • Marinos V, Marinos P, Hoek E (2005) The geological strength index: applications and limitations. Bull Eng Geol Environ 64:55–65. doi:10.1007/s10064-004-0270-5

    Article  Google Scholar 

  • Medina F (1994) Evolution structurale du Haut Atlas occidental et des régions voisines, dans le cadre de l’ouverture de l’Atlantique Central et de la collision Afrique-Europe. Dissertation (PhD thesis) Mohamed V University, Rabat, Morocco

  • Nateghi R (2011) Prediction of ground vibration level induced by blasting at different rock units. Int J Rock Mech Min Sci 48:899–908

    Article  Google Scholar 

  • Rocscience (2005) 2D limit equilibrium analysis software slide 5.0. http://www.rocscience.com. Accessed Mar 2014

  • Scott A (1999) Effective blast engineering. In: Explo’99, AusIMM, pp 57–63. http://www.ausimm.com.au/publications/epublication.aspx?ID=2938. Accessed Mar 2014

  • Singh PK, Roy MP, PaswanRanjit K (2014) Controlled blasting for long term stability of pit-walls. Int J Rock Mech Min Sci 70:388–399. doi:10.1016/j.ijrmms.2014.05.006

    Google Scholar 

  • Tatard L (2010) statistical analysis of triggered landslides: implication for earthquake and weather controls. Dissertation (PhD thesis), Joseph-Fourier University. Grenoble I, France

  • Wyllie DC, Mah C (2004) Rock slope engineering. CRC Press, Taylor and Francis Group, New York

    Google Scholar 

Download references

Acknowledgments

This research was performed in a program of collaboration between Granada University in Spain and Hassan II University in Morocco. This collaboration was supported by a grant for exchange and cooperation between Europe and the Maghreb in the Erasmus Mundus–Al Idrisi project. This work has also been possible thanks to the Moroccan Public Laboratory of Testing and Studies (LPEE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid El Hamdouni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benchelha, T., Remmal, T., El Hamdouni, R. et al. Combined effects of blasting and geological structure on rock mass stability—a case study from the Marrakech–Agadir highway, Morocco. Bull Eng Geol Environ 76, 815–828 (2017). https://doi.org/10.1007/s10064-016-0867-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-016-0867-5

Keywords

Navigation