Skip to main content
Log in

The uniqueness of the pivotal mechanisms without strategy-proofness

  • Original Paper
  • Published:
Review of Economic Design Aims and scope Submit manuscript

Abstract

Moulin (J Public Econ 31:53–78, 1986; Theorem 4) characterizes the pivotal mechanisms without imposing strategy-proofness under the assumption of the full domain. In this paper, we provide a domain property that is necessary and sufficient for Moulin’s characterization without strategy-proofness to hold. We also provide examples of domains that do (not) satisfy our domain property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In contrast, Mishra and Sen (2012) consider m-dimensional open interval domains.

References

  • Carbajal JC (2010) On the uniqueness of groves mechanisms and the payoff equivalence principle. Games Econ Behav 68:763–772

    Article  Google Scholar 

  • Chung K-S, Olszewski W (2007) A non-differentiable approach to revenue equivalence. Theor Econ 2:469–487

    Google Scholar 

  • Clarke EH (1971) Multipart pricing of public goods. Public Choice 8:19–33

    Google Scholar 

  • Heydenreich B, Müller R, Vohra RV (2009) Characterization of revenue equivalence. Econometrica 77:307–316

    Article  Google Scholar 

  • Mishra D, Sen A (2012) Roberts’ theorem with neutrality: a social welfare ordering approach. Games Econ Behav 75:283–298

    Article  Google Scholar 

  • Moulin H (1986) Characterizations of the pivotal mechanism. J Public Econ 31:53–78

    Article  Google Scholar 

  • Nakamura Y (2019) Strategy-proof characterizations of the pivotal mechanisms on restricted domains. Math Soc Sci 101:77–87

    Article  Google Scholar 

  • Suijs J (1996) On incentive compatibility and budget balancedness in public decision making. Econ Des 2:193–209

    Google Scholar 

  • Vickrey W (1961) Counterspeculation, auctions, and competitive sealed tenders. J Finance 16:8–37

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to Toyotaka Sakai and the two anonymous referees for their insightful and valuable comments. I would also like to thank Takako Fujiwara-Greve, Toru Hokari, Yoko Kawada, Shinsuke Nakamura, Noriaki Okamoto, and Shuhei Shiozawa for their helpful comments. This research is financially supported by JSPS KAKENHI, Grant-in-Aid for Research Activity Start-up (19K23200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuta Nakamura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A. Proof of Theorem 1

(i) \(\varvec{\Rightarrow }\) (ii). Let us show that if a domain \(\prod _{j=1}^n D_j\) violates Property 1, then there exists a mechanism that satisfies the five axioms and is not Pareto-dominated by a pivotal mechanism. Suppose that \(\prod _{j=1}^n D_j\) violates Property 1. Let \((d^*,t^*_1, \ldots , t^*_n) \in {\mathscr {M}}(\prod _{j=1}^n D_j)\) be a pivotal mechanism. Since \(\prod _{j=1}^n D_j\) violates Property 1, there exist \(i \in N, {\bar{v}} \in \prod _{j=1}^n D_j\), and \(\varepsilon >0\) such that for each \(v' \in \prod _{j=1}^n D_j\) with \({\bar{v}} \ \begin{array}{c} \rightarrow \\ i \end{array} \ v'\),

$$\begin{aligned} \left\{ \max _{y \in X} \sum _{j=1}^n v'_j(y)-\sum _{j \ne i} \min _{y \in E(\sum _{k \ne j}v'_k)} v'_j(y)\right\} -\left\{ u_i\left( d^*(\bar{v}), t^*_i({\bar{v}}); {\bar{v}}_i \right) \right\} \ge \varepsilon . \end{aligned}$$
(9)

Let \((d, t_1, \ldots , t_n) \in {\mathscr {M}}(\prod _{j=1}^n D_j)\) be such that for each \(v \in \prod _{j=1}^n D_j\),

$$\begin{aligned}&\text {(i)} \ d(v) \in E\left( \sum _{j=1}^n v_j \right) , \nonumber \\&\text {(ii)} \ t_i(v) =-v_i\left( d(v)\right) \nonumber \\&\quad +\inf _{v \ \begin{array}{c} \rightarrow \\ i \end{array} \ v'} \left\{ \max _{y \in X} \sum _{j=1}^n v'_j(y)-\sum _{j \ne i} \min _{y \in E(\sum _{k \ne j}v'_k)} v'_j(y)\right\} \nonumber \\&\text {(iii)} \ t_j(v)= -v_j\left( d(v)\right) +\min _{y \in E(\sum _{k \ne j}v_k)} v_j(y) \ \ \text { for all }j \ne i. \end{aligned}$$
(10)

Note that by the same argument as Eq. (6) in Section 3, for each \(v \in \prod _{j=1}^n D_j\),

$$\begin{aligned} u_i\left( d(v), t_i(v); v_i \right) =v_i\left( d(v)\right) +t_i(v)&=\inf _{v \ \begin{array}{c} \rightarrow \\ i \end{array} \ v'} \left\{ \max _{y \in X} \sum _{j=1}^n v'_j(y)-\sum _{j \ne i} \min _{y \in E(\sum _{k \ne j}v'_k)} v'_j(y)\right\} \nonumber \\&\ge u_i\left( d^*(v), t^*_i(v); v_i \right) . \end{aligned}$$
(11)

Moreover, by definition of \((d, t_1, \ldots , t_n)\) and Inequality (9), we have

$$\begin{aligned} u_i\left( d({\bar{v}}), t_i({\bar{v}}); {\bar{v}}_i \right) ={\bar{v}}_i\left( d(\bar{v})\right) +t_i({\bar{v}})&\ge \inf _{{\bar{v}} \ \begin{array}{c} \rightarrow \\ i \end{array} \ v'} \left\{ \max _{y \in X} \sum _{j=1}^n v'_j(y)-\sum _{j \ne i} \min _{y \in E(\sum _{k \ne j}v'_k)} v'_j(y)\right\} \\&\ge u_i\left( d^*({\bar{v}}), t^*_i({\bar{v}}); {\bar{v}}_i \right) +\varepsilon > u_i\left( d^*({\bar{v}}), t^*_i({\bar{v}}); {\bar{v}}_i \right) . \end{aligned}$$

Therefore, \((d, t_1, \ldots , t_n)\) is not Pareto dominated by a pivotal mechanism. In addition, obviously \((d, t_1, \ldots , t_n)\) satisfies efficiency. Let us show that \((d, t_1, \ldots , t_n)\) satisfies feasibility, no free ride, no disposal of utility, and distribution.

Feasibility Take any \(v \in \prod _{j=1}^n D_j\). Note that

$$\begin{aligned} u_i\left( d(v), t_i(v); v_i \right)&=\inf _{v \ \begin{array}{c} \rightarrow \\ i \end{array} \ v'} \left\{ \max _{y \in X} \sum _{j=1}^n v'_j(y)-\sum _{j \ne i} \min _{y \in E(\sum _{k \ne j}v'_k)} v'_j(y)\right\} , \\ u_j\left( d(v), t_j(v); v_j \right)&= \min _{y \in E(\sum _{k \ne j}v_k)} v_j(y) \ \ \text { for all }j \ne i. \end{aligned}$$

Therefore, by \(v \ \begin{array}{c} \rightarrow \\ i \end{array} \ v\),

$$\begin{aligned} \sum _{j=1}^n t_j(v)&=\left\{ \max _{y \in X} \sum _{j=1}^n v_j(y)+\sum _{j=1}^n t_j(v)\right\} -\max _{y \in X} \sum _{j=1}^n v_j(y)\\&=\sum _{j=1}^n u_j\left( d(v), t_j(v); v_j \right) - \max _{y \in X} \sum _{j=1}^n v_j(y) \\&=\inf _{v \ \begin{array}{c} \rightarrow \\ i \end{array} \ v'} \left\{ \max _{y \in X} \sum _{j=1}^n v'_j(y)-\sum _{j \ne i} \min _{y \in E(\sum _{k \ne j}v'_k)} v'_j(y)\right\} \\&\quad -\left\{ \max _{y \in X} \sum _{j=1}^n v_j(y)-\sum _{j \ne i} \min _{y \in E(\sum _{k \ne j}v_k)} v_j(y)\right\} \\&\le 0. \end{aligned}$$

Hence \(\sum _{j=1}^n t_j(v) \le 0\).

No free ride Take any \(j \in N\) and any \(v \in \prod _{j=1}^n D_j\). If \(j \ne i\), then clearly \(u_j\left( d(v), t_j(v); v_j \right) =v_j\left( d(v)\right) +t_j(v)=\min _{y \in E(\sum _{k \ne j}v_k)} v_j(y)\). Suppose that \(j=i\). Note that since the pivotal mechanism \((d^*,t^*_1, \ldots , t^*_n)\) satisfies no free ride, it follows that \(u_i\left( d^*(v), t^*_i(v); v_i \right) \ge \min _{y \in E(\sum _{j \ne i} v_j)} v_i(y)\). Then, by Eq. (11), we have

$$\begin{aligned} u_i\left( d(v), t_i(v); v_i \right) \ge u_i\left( d^*(v), t^*_i(v); v_i \right) \ge \min _{y \in E(\sum _{j \ne i} v_j)} v_i(y). \end{aligned}$$

Therefore, \((d,t_1, \ldots , t_n)\) satisfies no free ride.

No disposal of utility Take any \(j \ne i\), any \(v \in \prod _{j=1}^n D_j\), and any \(v'_j \in D_j\) with \(v'_j \ge v_j\). Then,

$$\begin{aligned} u_j\left( d(v'_j, v_{-j}), t_j(v'_j, v_{-j}); v_j \right)= & {} \min _{y \in E(\sum _{k \ne j} v_k)} v'_j(y) \ge \min _{y \in E(\sum _{k \ne j}v_k)} v_j(y)\\= & {} u_j\left( d(v), t_j(v); v_j \right) . \end{aligned}$$

Next, take any \(v \in \prod _{j=1}^n D_j\) and any \(v'_i \in D_i\) with \(v'_i \ge v_i\). Then, since \((v_i, v_{-i}) \ \begin{array}{c} \rightarrow \\ i \end{array} \ (v'_i, v_{-i})\) and the relation \(\begin{array}{c} \rightarrow \\ i \end{array}\) is transitive,

$$\begin{aligned}&\inf _{(v'_i, v_{-i}) \ \begin{array}{c} \rightarrow \\ i \end{array} \ v'} \left\{ \max _{y \in X} \sum _{j=1}^n v'_j(y)-\sum _{j \ne i} \min _{y \in E(\sum _{k \ne j}v'_k)} v'_j(y)\right\} \\&\quad \ge \inf _{(v_i, v_{-i}) \ \begin{array}{c} \rightarrow \\ i \end{array} \ v'} \left\{ \max _{y \in X} \sum _{j=1}^n v'_j(y)-\sum _{j \ne i} \min _{y \in E(\sum _{k \ne j}v'_k)} v'_j(y)\right\} . \end{aligned}$$

Therefore,

$$\begin{aligned} u_i\left( d(v'_i, v_{-i}), t_i(v'_i, v_{-i}); v'_i \right) \ge u_i\left( d(v), t_i(v); v_i \right) . \end{aligned}$$

Distribution It suffices to show that for each distinct \(k, \ell \in N\), each \(v \in \prod _{j=1}^n D_j\) with \(E(\sum _{j=1}^n v_{j})=\{z\}\), and each \(v'_{\ell } \in D_{\ell }\) such that

$$\begin{aligned} v'_{\ell }(z)>v_{\ell }(z) \ \ \text { and } \ \ v'_{\ell }(x)=v_{\ell }(x) \ \ \text { for all }x \in X \setminus \{z\}, \end{aligned}$$

we have

$$\begin{aligned} u_{k}\left( d(v'_{\ell }, v_{-{\ell }}), t_k(v'_{\ell }, v_{-{\ell }}); v_{k} \right) \ge u_{k}\left( d(v_{\ell }, v_{-{\ell }}), t_k(v_{\ell }, v_{-{\ell }}); v_{k} \right) . \end{aligned}$$

Take any distinct \(k, \ell \in N\).

Let us consider the case with \(k \ne i\). Take any \(v \in \prod _{j=1}^n D_j\) such that for some \(z \in X, E(\sum _{j=1}^n v_{j})=\{z\}\). We first show that

$$\begin{aligned} v_{k}(z) \ge \min _{y \in E(\sum _{j \ne k}v_{j})} v_{k}(y) . \end{aligned}$$
(12)

Suppose, by contradiction, that \(\min _{y \in E(\sum _{j \ne k}v_{j})} v_{k}(y) > v_{k}(z)\). Then,

$$\begin{aligned} \max _{y \in X} \sum _{j=1}^n v_{j}(y)\ge & {} \min _{y \in E(\sum _{j \ne k}v_{j})} v_{k}(y) + \max _{y \in X} \sum _{ j \ne k}v_{j}(y) >v_k(z)\\&\quad +\,\max _{y \in X} \sum _{ j \ne k}v_{j}(y) \ge \sum _{j=1}^n v_{j}(z), \end{aligned}$$

a contradiction to \(E(\sum _{j=1}^n v_{j})=\{z\}\). Therefore, Eq. (12) holds.

Now, take any \(v'_{\ell } \in D_{\ell }\) such that \(v'_{\ell }(z)>v_{\ell }(z)\) and \(v'_{\ell }(x)=v_{\ell }(x)\) for all \(x \in X \setminus \{z\}\). Then,

$$\begin{aligned} E\left( v'_{\ell }+\sum _{j \ne k, \ell } v_{j} \right) \subset E\left( \sum _{j \ne k} v_{j}\right) \cup \{z\}. \end{aligned}$$
(13)

Therefore, by \(k \ne i\) and Eqs. (12) and (13),

$$\begin{aligned} u_{k}\left( d(v'_{\ell }, v_{-{\ell }}), t_k(v'_{\ell }, v_{-{\ell }}); v_{k} \right)&=\min _{y \in E( v'_{\ell }+\sum _{j \ne k, \ell } v_{j})} v_{k}(y) \ge \min _{y \in E(\sum _{j \ne k} v_{j}) \cup \{z\}} v_{k}(y) \\&= \min _{y \in E(\sum _{j \ne k} v_{j}) } v_{k}(y) = u_{k}\left( d(v_{\ell }, v_{-{\ell }}), t_k(v_{\ell }, v_{-{\ell }}); v_{k} \right) . \end{aligned}$$

Next, consider the case with \(k = i\). Take any \(v \in \prod _{j=1}^n D_j\) with \(E(\sum _{j=1}^n v_j)=\{z\}\) and any \(v'_{\ell } \in D_{\ell }\) such that \(v'_{\ell }(z)>v_{\ell }(z)\) and \(v'_{\ell }(x)=v_{\ell }(x)\) for all \(x \in X \setminus \{z\}\). Then, since \((v_{\ell }, v_{-{\ell }}) \ \begin{array}{c} \rightarrow \\ i \end{array} \ (v'_{\ell }, v_{-{\ell }})\), we have

$$\begin{aligned}&\inf _{(v'_{\ell }, v_{-{\ell }}) \ \begin{array}{c} \rightarrow \\ i \end{array} \ v''} \left\{ \max _{y \in X} \sum _{j=1}^n v''_j(y)-\sum _{j \ne i} \min _{y \in E(\sum _{h \ne j} v''_{h})} v''_j(y)\right\} \\&\quad \ge \inf _{(v_{\ell }, v_{-{\ell }}) \ \begin{array}{c} \rightarrow \\ i \end{array} \ v''} \left\{ \max _{y \in X} \sum _{j=1}^n v''_j(y)-\sum _{j \ne i} \min _{y \in E(\sum _{h \ne j} v''_{h})} v''_{j}(y)\right\} . \end{aligned}$$

Therefore, \(u_{i}\left( d(v'_{\ell }, v_{-{\ell }}), t_i(v'_{\ell }, v_{-{\ell }}); v_{i} \right) \ge u_{i}\left( d(v_{\ell }, v_{-{\ell }}), t_i(v_{\ell }, v_{-{\ell }}); v_{i} \right) \).

(ii) \(\varvec{\Rightarrow }\) (i). Suppose that a domain \(\prod _{j=1}^n D_j\) satisfies Property 1. Take any mechanism \((d, t_1, \ldots , t_n) \in {\mathscr {M}}(\prod _{j=1}^n D_j)\) that satisfies efficiency, feasibility, no free ride, no disposal of utility, and distribution. Let \((d^*,t^*_1, \ldots , t^*_n) \in {\mathscr {M}}(\prod _{j=1}^n D_j)\) be a pivotal mechanism. Let us show that for each \(i \in N\) and each \(v \in \prod _{j=1}^n D_j, u_i\left( d^*(v), t^*_i(v); v_i\right) \ge u_i\left( d(v), t_i(v); v_i\right) \). Take any \(i \in N\), any \(v \in \prod _{j=1}^n D_j\), and any \(\varepsilon >0\). Since \(\prod _{j=1}^n D_j\) satisfies Property 1, there exists \(v' \in \prod _{j=1}^n D_j\) with \(v \ \begin{array}{c} \rightarrow \\ i \end{array} \ v'\) such that

$$\begin{aligned} \left\{ \max _{y \in X} \sum _{j=1}^n v'_j(y)-\sum _{j \ne i} \min _{y \in E(\sum _{k \ne j} v'_k)} v'_j(y)\right\} - \left\{ u_i\left( d^*(v), t^*_i(v); v_i\right) \right\} <\varepsilon . \end{aligned}$$
(14)

By the same argument as Eq. (4) in Sect. 3, it follows that

$$\begin{aligned} u_i\left( d(v'), t_i(v'); v'_i\right) \le \max _{y \in X} \sum _{j=1}^n v'_j(y)-\sum _{j \ne i} \min _{y \in E(\sum _{k \ne j} v'_k)} v'_j(y). \end{aligned}$$
(15)

Combining Eqs. (14) and (15), we have

$$\begin{aligned} u_i\left( d(v'), t_i(v'); v'_i\right) \le \max _{y \in X} \sum _{j=1}^n v'_j(y)-\sum _{j \ne i} \min _{y \in E(\sum _{k \ne j} v'_k)} v'_j(y)< u_i\left( d^*(v), t^*_i(v); v_i\right) +\varepsilon . \end{aligned}$$

In addition, by \(v \ \begin{array}{c} \rightarrow \\ i \end{array} \ v'\) and Lemma 1,

$$\begin{aligned} u_i\left( d(v), t_i(v); v_i\right)\le & {} u_i\left( d(v'), t_i(v'); v'_i\right) \\< & {} u_i\left( d^*(v), t^*_i(v); v_i\right) +\varepsilon . \end{aligned}$$

Since \(\varepsilon \) was chosen arbitrarily, \(u_i\left( d(v), t_i(v); v_i\right) \le u_i\left( d^*(v), t^*_i(v); v_i\right) \). \(\square \)

1.2 B. Proof of Lemma 2

Suppose that a domain \( \prod _{j=1}^n D_j\) satisfies Property 1*. Take any \(i \in N\), any \(v \in \prod _{j=1}^n D_j\), and any \(\varepsilon >0\). Then, there exists \(v' \in \prod _{j=1}^n D_j\) with \(v \ \, \begin{array}{c} \rightarrow \\ i \end{array} \ \, v'\) such that for some \(z \in E(\sum _{j \ne i} v_j)\) the following two conditions are satisfied:

  1. (i)

    \(\left\{ v'_i(z)+ \sum _{j \ne i} v_j(z)\right\} -\max _{y \in X} \sum _{j=1}^n v_j(y) < \varepsilon \),

  2. (ii)

    \(E(\sum _{k \ne j} v'_k)=\{z\}\) for all \(j \in N\).

Note that by Condition (ii), \(E(\sum _{j =1}^n v'_j)=\{z\}\). Therefore, by Conditions (i) and (ii),

$$\begin{aligned}&\max _{y \in X} \sum _{j=1}^n v'_j(y)-\sum _{j \ne i} \min _{y \in E(\sum _{k \ne j} v'_k)} v'_j(y) =\sum _{j=1}^n v'_j(z)-\sum _{j \ne i} v'_j(z)\\&\quad =v'_i(z) <\max _{y \in X} \sum _{j=1}^n v_j(y)- \sum _{j \ne i} v_j(z)+\varepsilon =\max _{y \in X} \sum _{j=1}^n v_j(y)-\max _{y \in X} \sum _{j \ne i} v_j(y)+\varepsilon . \end{aligned}$$

Thus,

$$\begin{aligned} \left\{ \max _{y \in X} \sum _{j=1}^n v'_j(y)-\sum _{j \ne i} \min _{y \in E(\sum _{k \ne j} v'_k)} v'_j(y)\right\} -\left\{ \max _{y \in X} \sum _{j=1}^n v_j(y)-\max _{y \in X} \sum _{j \ne i} v_j(y)\right\} <\varepsilon . \end{aligned}$$

Therefore, the domain \(\prod _{j=1}^n D_j\) satisfies Property 1. \(\square \)

1.3 C. Proof of Lemma 3

Take any \(i \in N\), any \(v \in \prod _{j=1}^n D_j\), and any \(\varepsilon >0\). Fix some \(z \in E(\sum _{j \ne i} v_j)\). Note that \(\max _{y \in X} \sum _{j=1}^n v_j(y)- \sum _{j \ne i} v_j(z) \ge v_i(z)\). Then, by Property 2*, there exists \(v'_i \in D_i\) such that:

  1. (i)

    \(\max _{y \in X} \sum _{j=1}^n v_j(y)- \sum _{j \ne i} v_j(z)< v'_i(z) <\max _{y \in X} \sum _{j=1}^n v_j(y)- \sum _{j \ne i} v_j(z) +\varepsilon \),

  2. (ii)

    \(v'_i(y)= v_i(y)\) for all \(y \in X \setminus \{z\}\).

First, Condition (i) implies that \(\left\{ v'_i(z)+ \sum _{j \ne i} v_j(z)\right\} -\max _{y \in X} \sum _{j=1}^n v_j(y) < \varepsilon \). Second, Conditions (i) and (ii) together imply that for each \(y \ne z\),

$$\begin{aligned} v'_i(y) +\sum _{j \ne i} v_j(y) =v_i(y) +\sum _{j \ne i} v_j(y)< v'_i(z) +\sum _{j \ne i} v_j(z), \end{aligned}$$

and hence, \(E(v'_i+\sum _{j \ne i} v_j)=\{z\}\).

On the other hand, again by Property 2*, there exists \(v'_{-i} \in \prod _{j \ne i} D_j\) such that for each \(j \ne i\),

$$\begin{aligned} v'_j(y)= {\left\{ \begin{array}{ll} v_j(z) + \delta \ &{}\text { if }y=z,\\ v_j(y) \ &{}\text {otherwise}, \end{array}\right. } \end{aligned}$$

where \(\delta >0\) is a sufficiently large number such that \(E(\sum _{k \ne j'} v'_k)=\{z\}\) for all \(j' \in N\). Then, obviously \(v \ \, \begin{array}{c} \rightarrow \\ i \end{array} \ \, v'\) holds. Therefore, the domain \(\prod _{j=1}^n D_j\) satisfies Property 1*. This and Lemma 2 in turn imply that \(\prod _{j=1}^n D_j\) satisfies Property 1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, Y. The uniqueness of the pivotal mechanisms without strategy-proofness. Rev Econ Design 24, 171–186 (2020). https://doi.org/10.1007/s10058-020-00236-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10058-020-00236-1

Keywords

JEL Classification

Navigation