Skip to main content
Log in

Accuracy in contests: players’ perspective

  • Original Paper
  • Published:
Review of Economic Design Aims and scope Submit manuscript

Abstract

We propose a political theory for the slow adoption of technology in sports and other contests. We investigate players’ preferences for new technology that improves contest accuracy. Modeling accuracy as the elasticity of “production” in a standard Tullock contest, we show that players may dislike accuracy if heterogeneity among them is: (1) sufficiently low; (2) moderate when the initial accuracy is low; or (3) high when the initial accuracy is high. We apply our results to the recent adoption of goal-line technology by major European soccer leagues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. According to Deloitte Consulting, in the midst of economic pressures, the European soccer market reached €19.4 billion in revenue terms in 2012, which implies an 11 % growth in 2011/2012. More details can be found at http://www.deloitte.com/ie/en/pages/about-deloitte/articles/european-football-market.html.

  2. Perhaps the most memorable ones are England’s second goal against Germany in the 1966 World Cup Final, Argentina’s first goal against England in the 1986 World Cup, and England’s second goal against Germany in the 2010 World Cup.

  3. See http://www.bbc.co.uk/sport/0/football/22107409.

  4. More details can be found at http://www.eku.edu/academics/facultysenate/minutes/2003-04/11-03-03/plus_minus_report/final.pdf

  5. In Fig. 1, the competitive balance measures the dispersion of wins across teams between 1994 and 2010 seasons. Formally, it is the standard deviation of wins. Thus, while 0 implies that the number of wins is the same for all teams, any non-zero number shows the degree of heterogeneity among teams’ number of wins with respect to the mean number of wins. More details can be found at http://www.soccerbythenumbers.com/2011/06/comparing-competitiveness-of-european.html.

  6. See Corchón (2007) and Konrad (2009) for detailed surveys of the contest literature.

  7. If efforts are interpreted as rent-seeking, then the design aims to minimize total effort.

  8. For \(r=1\), it is possible that the high-cost players may drop out of the contest, especially when the number of the low-cost ones is sufficiently large. We ignore this corner case here both because our investigation is about the interaction between the two types of players and because one can take the limit \(r\rightarrow 1\).

  9. As mentioned in the Introduction, Wang (2010) also investigates the impact of contest accuracy in a two-player setting, but his sole focus is on total efforts.

  10. That is, \(\frac{d\pi _{F}^{*}}{dr}\rightarrow 0\) and \(\frac{d\pi _{F}^{*}}{dr}\rightarrow 0~\hbox {as}~N \rightarrow \infty \), which is obvious from the proof of Proposition 5.

  11. In the US, charter schools admit students by lottery. Our result suggests that depending on applicant pools, this may be aligned with parents’ preferences.

  12. “Established in 1887, the Boston Athletic Association is a non-profit organization with a mission of promoting a healthy lifestyle through sports, especially running.” http://www.baa.org/about.aspx.

  13. Formally, replicating the population of players by \(k>1\), note that \(\frac{ kn-1}{km}> \frac{n-1}{m}\), which implies a lower cost threshold in part (a).

  14. See Footnote 4.

  15. For more information, see http://www.independent.co.uk/sport/tennis/djokovic-resists-hawkeye-calls-1990418.html.

  16. A parallel argument can also be made between a contest and a signalling environment where players exert effort to signal their abilities. Focusing on separating equilibrium, a favorite player better differentiates himself under a higher accuracy, \(r\).

  17. See Footnote 15.

References

  • Alcalde Pérez J, Dahm M (2007) All-pay auction equilibria in contests. Working paper

  • Amegashie JA (1999) The number of rent-seekers and aggregate rent-seeking expenditures: an unpleasant result. Public Choice 99(1–2):57–62

    Article  Google Scholar 

  • Amegashie JA (2000) Some results on rent-seeking contests with shortlisting. Public Choice 105(3–4):245–253

    Article  Google Scholar 

  • Baye MR, Kovenock D, De Vries CG (1993) Rigging the lobbying process: an application of the all-pay auction. Am Econ Rev 83(1):289–294

    Google Scholar 

  • Che YK, Gale I (1997) Rent dissipation when rent seekers are budget constrained. Public Choice 92(1–2):109–126

    Article  Google Scholar 

  • Corchón LC (2007) The theory of contests: a survey. Rev Econ Des 11(2):69–100

    Google Scholar 

  • Dasgupta A, Nti KO (1998) Designing an optimal contest. Eur J Political Econ 14(4):587–603

    Article  Google Scholar 

  • Dixit A (1987) Strategic behavior in contests. Am Econ Rev 77(5):891–898

    Google Scholar 

  • Dixon C (2004) Plus/minus grading: if given a choice. Coll Stud J 38(2):280

    Google Scholar 

  • Glazer A, Hassin R (1988) Optimal contests. Econ Inq 26(1):133–143

    Article  Google Scholar 

  • Gradstein M (1998) Optimal contest design: volume and timing of rent-seeking in contests. Eur J Political Econ 14(4):575–585

    Article  Google Scholar 

  • Gradstein M, Konrad KA (1999) Orchestrating rent-seeking contests. Econ J 109(458):536–545

    Article  Google Scholar 

  • Konrad KA (2009) Strategy and dynamics in contests. Oxford University Press, Oxford

  • Michaels R (1988) The design of rent-seeking competitions. Public Choice 56(1):17–29

    Article  Google Scholar 

  • Moldovanu B, Sela A (2001) The optimal allocation of prizes in contests. Am Econ Rev 91(3):542–558

    Article  Google Scholar 

  • Nti KO (1999) Rent-seeking with asymmetric valuations. Public Choice 98(3–4):415–430

    Article  Google Scholar 

  • Nti KO (2004) Maximum efforts in contests with asymmetric valuations. Eur J Political Econ 20(4):1059–1066

    Article  Google Scholar 

  • Szidarovszky F, Okuguchi K (1997) On the existence and uniqueness of pure Nash equilibrium in rent-seeking games. Games Econ Behav 18(1):135–140

    Article  Google Scholar 

  • Tullock G (1980) Efficient rent seeking. In: Buchanan J, Tollison R, Tullock G (eds) Toward a theory of the rent seeking society. Texas A&M Univ. Press, College Station, pp 97–112

    Google Scholar 

  • Wang Z (2010) The optimal accuracy level in asymmetric contests. B.E. J Theor Econ 10(1):1–13

    Google Scholar 

  • Wärneryd K (2003) Information in conflicts. J Econ Theory 110(1):121–136

    Article  Google Scholar 

  • Wärneryd K (2012) Multi-player contests with asymmetric information. Econ Theory 51(2):277–287

    Article  Google Scholar 

  • Yildirim H (2005) Contests with multiple rounds. Games Econ Behav 51(1):213–227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Yildirim.

Additional information

This paper is based on my dissertation submitted to the Stockholm School of Economics. I am indebted to Karl Wärneryd for his continuous supervision. I thank Tore Ellingsen, Dan Kovenock, Stergios Skaperdas, Huseyin Yildirim, and especially Atila Abdulkadiroglu (the Editor) for comments. I also thank seminar participants at the Istanbul Technical University, the Stockholm School of Economics, and the University of California-Irvine. All errors are mine.

Appendix

Appendix

Proof of Proposition 3

The derivative of \(\theta ^{*}\) with respect to \(r\) is given by

$$\begin{aligned} \frac{\partial \theta ^{*}}{\partial r}=-\frac{\partial g(.)/\partial r}{\partial g(.)/\partial \theta ^{*}}, \end{aligned}$$
(7)

where \(g(.)\) is defined as in (6). Routine algebra yields

$$\begin{aligned} \frac{\partial \theta ^{*}}{\partial r}=\frac{(-\theta ^{*}\ln \theta ^{*})\left( 2(m-1)(\theta ^{*})^{r}-mc\theta ^{*}+n\right) }{r(2(m-1)(\theta ^{*})^{r}-mc\theta ^{*}+n)-mc\theta ^{*}-(n-1)c(\theta ^{*})^{1-r}}. \end{aligned}$$
(8)

Note that (6) implies

$$\begin{aligned} (\theta ^{*})^{r}=\frac{mc\theta ^{*}-n+\sqrt{(mc\theta ^{*}-n)^{2}+4(m-1)(n-1)c\theta ^{*}}}{2(m-1)}. \end{aligned}$$
(9)

Inserting (9) in the numerator and observing that (6) also implies \(mc\theta ^{*}+(n-1)c(\theta ^{*})^{1-r}=(m-1)(\theta ^{*})^{r}+n\), (8) can be rewritten as

$$\begin{aligned} \dfrac{\partial \theta ^{*}}{\partial r}=\dfrac{(-\theta ^{*}\ln \theta ^{*})\sqrt{(mc\theta ^{*}-n)^{2}+4(m-1)(n-1)c\theta ^{*}} }{r(2(m-1)(\theta ^{*})^{r}-mc\theta ^{*}+n)-(m-1)(\theta ^{*})^{r}-n}. \end{aligned}$$

Clearly, the numerator has a positive sign because \(\theta ^{*}<1\) by Proposition 1. In contrast, the denominator has a negative sign because \( 0<r<1\) implies

$$\begin{aligned}&r(2(m-1)(\theta ^{*})^{r}-mc\theta ^{*}+n)-(m-1)(\theta ^{*})^{r}-n\\&\quad <(m-1)(\theta ^{*})^{r}-mc\theta ^{*}, \end{aligned}$$

or, employing (9),

$$\begin{aligned} <\dfrac{-(mc\theta ^{*}+n)+\sqrt{(mc\theta ^{*}-n)^{2}+4(m-1)(n-1)c\theta ^{*}}}{2}<0. \end{aligned}$$

Therefore, \(\frac{\partial \theta ^{*}}{\partial r}<0\) by (7), proving part (a). To prove part (b), note that the derivative of \(\pi _{U}^{*}\) with respect to \(r\) is given by

$$\begin{aligned} \frac{d\pi _{U}^{*}}{dr}=\frac{\partial \pi _{U}^{*}}{\partial r}+ \frac{\partial \pi _{U}^{*}}{\partial \theta }\dfrac{\partial \theta ^{*}}{\partial r}, \end{aligned}$$
(10)

where simple calculations yield

$$\begin{aligned} \dfrac{\partial \pi _{U}^{*}}{\partial r}&= -\frac{(m-1)(\theta ^{*})^{2r}+n(\theta ^{*})^{r}}{(m(\theta ^{*})^{r}+n)^{2}}V,\\ \dfrac{\partial \pi _{U}^{*}}{\partial \theta }&= \dfrac{r(\theta ^{*})^{r-1}[(1-r)(m(\theta ^{*})^{r}+n)+2r(\theta ^{*})^{r}]n}{\left( m(\theta ^{*})^{r}+n\right) ^{3}}V. \end{aligned}$$

Because, \(0<\theta ^{*}\) if \(0<r<1\) by Proposition 1 and \(1\le m\) by assumption, \(\frac{\partial \pi _{U}^{*}}{\partial r}<0\) and \(\frac{\partial \pi _{U}^{*}}{\partial \theta }>0\). Moreover, \(\frac{\partial \theta ^{*}}{\partial r}<0\) by part (a). Thus, both the first and second terms in (10) have negative signs, proving part (b). \(\square \)

Lemma 2

\(\lim _{r\rightarrow 0}\theta ^{*}=\frac{1}{c}\) and

$$\begin{aligned} \lim \nolimits _{r\rightarrow 1}\theta ^{*}=\left\{ \begin{array}{lll} \dfrac{n-(n-1)c}{m(c-1)+1} &{} \quad \textit{if} &{} \; n>(n-1)c \\ &{} &{} \\ 0 &{} \quad \textit{if} &{} \; n\le (n-1)c. \end{array} \right. \end{aligned}$$

Proof of Lemma 2

Let \(\theta _{0}^{*}\equiv \lim _{r\rightarrow 0}\theta ^{*}\) and \(\theta _{1}^{*}\equiv \lim _{r\rightarrow 1}\theta ^{*}\). As \(r\rightarrow 0\), (6) reduces to

$$\begin{aligned} (m-1)-mc\theta _{0}^{*}+n-(n-1)c\theta _{0}^{*}=0, \end{aligned}$$

which gives \(\theta _{0}^{*}=\frac{1}{c}\), as claimed. Likewise, as \(r\rightarrow 1\), (6) simplifies to

$$\begin{aligned} \theta _{1}^{*}\times \left[ \frac{n-(n-1)c}{mc-(m-1)}-\theta _{1}^{*}\right] =0. \end{aligned}$$

Clearly, for \(c\ge \frac{n}{n-1}\), we have \(\theta _{1}^{*}=0\). Suppose that \(c<\frac{n}{n-1}\) and by way of contradiction \(\theta _{1}^{*}=0\). Then, as \(r\rightarrow 1\), \(x_{U}^{*}\rightarrow 0\) and the first-order conditions in (4) reduce to

$$\begin{aligned} \frac{\partial \pi _{F}^{*}}{\partial x_{F}}=\dfrac{1}{nx_{F}^{*}}\left[ 1- \dfrac{1}{n}\right] V-c_{F}=0, \end{aligned}$$

and

$$\begin{aligned} \frac{\partial \pi _{U}}{\partial x_{U}}=\dfrac{1}{nx_{F}^{*}}V-c_{U}=0, \end{aligned}$$

which, together, imply \(c=\frac{n}{n-1}\nless \frac{n}{n-1}\), which, in turn, implies \(\theta ^{*}_{1}\ne 0\). Thus, \(\theta ^{*}_{1}=\frac{n-(n-1)c}{mc-(m-1)}\) for \(c<\frac{ n}{n-1}\), as desired. \(\square \)

Proof of Proposition 4

Using Proposition 1(c), the derivative of \(\pi _{F}^{*}\) with respect to \(r\) can be written as

$$\begin{aligned} \dfrac{d\pi _{F}^{*}}{dr}=\dfrac{dp_{F}^{*}}{dr}(1-r+2rp_{F}^{*})V-p_{F}^{*}(1-p_{F}^{*})V, \end{aligned}$$
(11)

where \(p_{F}^{*}=\frac{1}{n+m\times (\theta ^{*})^{r}}\) by Proposition 1(a). Noting that \(\frac{dp_{F}^{*}}{dr}=\frac{\partial p_{F}^{*}}{\partial r}+\frac{\partial p_{F}^{*}}{\partial \theta ^{*}}\frac{\partial \theta ^{*}}{\partial r}\) and employing (8), routine algebra yields

$$\begin{aligned} \frac{dp_{F}^{*}}{dr}=\frac{\dfrac{(m(\theta ^{*})^{r}+n-1)}{\left( m(\theta ^{*})^{r}+n\right) ^{2}}mc(\theta ^{*})^{1+r}(\ln \theta ^{*})}{2r(m-1)(\theta ^{*})^{2r}-(1+r)mc(\theta ^{*})^{1+r}+nr(\theta ^{*})^{r}-(n-1)c\theta ^{*}}. \end{aligned}$$
(12)

Observe that \(\lim _{r\rightarrow 0}p_{F}^{*}=\frac{1}{m+n}\) and \( \lim _{r\rightarrow 0}\frac{dp_{F}^{*}}{dr}=\frac{m\ln c}{(m+n)^{2}}\) because \(\lim _{r\rightarrow 0}\theta ^{*}=\frac{1}{c}\) by Lemma 2. Because, by (11), we have

$$\begin{aligned} \lim \nolimits _{r\rightarrow 0}\dfrac{d\pi _{F}^{*}}{dr} =\lim \nolimits _{r\rightarrow 0}\left[ \dfrac{dp_{F}^{*}}{dr} V\right] -\lim \nolimits _{r\rightarrow 0}[p_{F}^{*}(1-p_{F}^{*})V], \end{aligned}$$

it follows

$$\begin{aligned} \lim \nolimits _{r\rightarrow 0}\frac{d\pi _{F}^{*}}{dr}=\frac{m\ln c-(m+n-1)}{\left( m+n\right) ^{2}}V. \end{aligned}$$

This proves part (a) because it readily implies that \(\lim \nolimits _{r \rightarrow 0}\frac{d\pi _{F}^{*}}{dr}<0\) if \(c<e^{1+(n-1)/m}\) and \( \lim \nolimits _{r\rightarrow 0}\frac{d\pi _{F}^{*}}{dr}>0\) if \( c>e^{1+(n-1)/m}\). The same steps in part (a) along with Lemma 2 yield

$$\begin{aligned} \lim \nolimits _{r\rightarrow 1}\dfrac{d\pi _{F}^{*}}{dr}=-\dfrac{2mc\ln \left( \dfrac{n-(n-1)c}{mc-(m-1)}\right) +mc+n}{\dfrac{(cm+n)^{3}}{\left( mc-m+1\right) \left( m+n-1\right) }}\text { if }c<\frac{n}{n-1}, \end{aligned}$$
(13)

and

$$\begin{aligned} \lim \nolimits _{r\rightarrow 1}\frac{d\pi _{F}^{*}}{dr}=-\frac{n-1}{n^{2}} V\text { if }c>\frac{n}{n-1}. \end{aligned}$$

Obviously, \(\lim \nolimits _{r\rightarrow 1}\frac{d\pi _{F}^{*}}{dr}<0\) if\( \ c>\frac{n}{n-1}\). To examine the sign of \(\frac{d\pi _{F}^{*}}{dr}\) for \(c<\frac{n}{n-1}\), let \(f(c)\equiv 2mc\ln (\frac{n-(n-1)c}{mc-(m-1)} )+mc+n\). Observe that \(f(1)=m+n>0\) and \(\lim _{c\rightarrow \frac{n}{n-1} }f(c)=-\infty <0\), which, together with the continuity, implies that there exists \(\widetilde{c}(n,m)\in (1,\frac{n}{n-1})\) such that \(f(\widetilde{c} (n,m))=0\). To show uniqueness, it is enough to show that \(f(c)\) is monotonic over \((1,\frac{n}{n-1})\). To this end, calculate the second derivative to obtain

$$\begin{aligned} \dfrac{\partial ^{2}f(c)}{\partial c^{2}}=\dfrac{2m\left( m+n-1\right) }{ \dfrac{\left( n-(n-1)c\right) ^{2}\left( mc-(m-1)\right) ^{2}}{ 1+m(n-1)+n(m-1)}}\left( \frac{2n\left( m-1\right) }{1+m(n-1)+n(m-1)}-c\right) . \end{aligned}$$

Observe that \(\tfrac{\partial ^{2}f(c)}{\partial c^{2}}>0\) for \(\frac{ 2n\left( m -1\right) }{1 + m(n - 1) + n(m - 1)}>c\) and \(\tfrac{\partial ^{2}f(c)}{ \partial c^{2}}<0\) for \(\frac{2n\left( m-1\right) }{1+m(n-1)+n(m-1)}<c\). Also, observe that

$$\begin{aligned} \left\{ \begin{array}{lll} 1<\frac{2n\left( m-1\right) }{1+m(n-1)+n(m-1)}<\frac{n}{n-1} &{}\quad \textit{if} &{} \quad m-1>n \\ &{} &{} \\ \frac{2n\left( m-1\right) }{1+m(n-1)+n(m-1)}<1 &{} \quad \textit{if} &{} \quad m-1<n. \end{array} \right. \end{aligned}$$

Therefore, if \(m-1<n\), \(\tfrac{\partial f(c)}{\partial c}\) is monotonically decreasing over \((1,\frac{n}{n-1})\), it thus takes its supremum at \(c=1\). Because

$$\begin{aligned} \frac{\partial f(c)}{\partial c}|_{c=1}={-}\frac{2m\left( n{-}(m{-}1)\right) (m+n{-}{1})\left( m+n{-}2mn{-}1\right) ^{2}}{\left( n^{2}+mn{-}m+1\right) ^{2}}<0\text { for }m{-}1<n, \end{aligned}$$

it implies that, if \(m-1<n\), \(\frac{\partial f(c)}{\partial c}<0\) for all \(c\in \) \((1,\frac{n}{n-1})\). If \(m-1>n\), however, \(\frac{\partial f(c)}{ \partial c}\) takes its maximum at \(c=\frac{2n\left( m-1\right) }{ 1+m(n-1)+n(m-1)}\) over \((1,\frac{n}{n-1})\). Because

$$\begin{aligned} \frac{\partial f(c)}{\partial c}|_{c=\frac{2n\left( m-1\right) }{ 1+m(n-1)+n(m-1)}}=-\frac{m\left( 5\left( n-1\right) \left( m-1\right) +2mn\right) }{m+n-1}+2m\ln \frac{n}{m-1}<0 \end{aligned}$$

for \(m-1>n,\) it implies that, if \(m-1>n\), \(\frac{\partial f(c)}{\partial c}<0\) for all \(c\in (1,\frac{n}{n-1})\). As a result, \(f(c)\) is monotonically decreasing over \((1, \frac{n}{n-1})\), which shows that \(\widetilde{c}(n,m)\) is unique. Moreover, as \(f(c)\) is decreasing, referring to (13), this shows

$$\begin{aligned} 0>\frac{d\pi _{F}^{*}}{dr}\text { if }c\in (1,\widetilde{c}(n,m)) \text { and }0<\frac{d\pi _{F}^{*}}{dr}\text { if }c\in \left( \widetilde{c }(n,m),\frac{n}{n-1}\right) , \end{aligned}$$

which completes the proof. \(\square \)

Proof of Proposition 5

By (11),

$$\begin{aligned} \frac{d\pi _{F}^{*}}{dr}=\frac{dp_{F}^{*}}{dr}(1-r+2rp_{F}^{*})V-p_{F}^{*}(1-p_{F}^{*})V. \end{aligned}$$

And by definition of total payoff, \(\frac{d(\alpha N\times \pi _{F}^{*})}{dr}=\alpha N\frac{d\pi _{F}^{*}}{dr}\). As \(N\rightarrow \infty \), we therefore have

$$\begin{aligned}&\lim _{N\rightarrow \infty }\frac{d\left( \alpha N\times \pi _{F}^{*}\right) }{dr}\nonumber \\&\quad =\lim _{N\rightarrow \infty }\left( \alpha N\times \frac{dp_{F}^{*}}{dr} (1-r+2rp_{F}^{*})V\right) -\lim _{N\rightarrow \infty }(\alpha N\times p_{F}^{*}(1-p_{F}^{*})V). \end{aligned}$$

As \(p_{F}^{*}=\frac{1}{N(\alpha +(\theta ^{*})^{r})}\) from Proposition 1(a), the second limit is

$$\begin{aligned}&\lim _{N\rightarrow \infty }\left( \alpha N\times p_{F}^{*}(1-p_{F}^{*})V\right) \\&\quad =\lim _{N\rightarrow \infty }\left( \alpha N\times \frac{1}{N\left( \alpha + (\theta ^{*})^{r}\right) }\left( 1-\frac{1}{N\left( \alpha +(\theta ^{*})^{r}\right) }\right) V\right) =\frac{\alpha }{\alpha +c\theta ^{*}}V. \end{aligned}$$

By (12), we have

$$\begin{aligned} \frac{dp_{F}^{*}}{dr}=\dfrac{\dfrac{(N(\theta ^{*})^{r}+\alpha N-1)}{ \left( N(\theta ^{*})^{r}+\alpha N\right) ^{2}}Nc(\theta ^{*})^{1+r}(\ln \theta ^{*})}{2r(N-1)(\theta ^{*})^{2r}-(1+r)Nc(\theta ^{*})^{1+r}+\alpha Nr(\theta ^{*})^{r}-(\alpha N-1)c\theta ^{*}}. \end{aligned}$$

From here, it follows

$$\begin{aligned} \lim _{N\rightarrow \infty }\left( \alpha N\times \frac{dp_{F}^{*}}{dr} (1-r+2rp_{F}^{*})V\right) =-\lim _{N\rightarrow \infty }\frac{\alpha c\theta ^{*}\ln \theta ^{*}}{(\alpha +c\theta ^{*})^{2}}V. \end{aligned}$$

Thus,

$$\begin{aligned} \lim _{N\rightarrow \infty }\frac{d(\alpha N\times \pi _{F}^{*})}{dr} =-\lim _{N\rightarrow \infty }\alpha \dfrac{\alpha +c\theta ^{*}(1+\ln \theta ^{*})}{\left( \alpha +c\theta ^{*}\right) ^{2}}V. \end{aligned}$$
(14)

Next, for \(n=\alpha N\) and \(m=N\), (6) reduces to

$$\begin{aligned} (\theta ^{*})^{2r}-\frac{N}{N-1}c(\theta ^{*})^{r+1}+\frac{\alpha N}{ N-1}(\theta ^{*})^{r}-\frac{\alpha N-1}{N-1}c\theta ^{*}=0. \end{aligned}$$

From here, as \(\theta ^{*}>0\) for \(r\in (0,1)\), it readily follows that \( \lim _{N\rightarrow \infty }\theta ^{*}=c^{-1/(1-r)}\). Using this, (14) becomes

$$\begin{aligned} \lim _{N\rightarrow \infty }\frac{d(\alpha N\times \pi _{F}^{*})}{dr} =-\alpha \dfrac{\alpha +c^{-\frac{r}{1-r}}\left( 1-\frac{\ln c}{1-r}\right) }{\left( \alpha +c^{-\frac{r}{1-r}}\right) ^{2}}V. \end{aligned}$$

Using Proposition 1(c) and replicating the same lines of algebra, we also find

$$\begin{aligned} \lim _{N\rightarrow \infty }\frac{d\left( N\times \pi _{U}^{*}\right) }{dr}=-\dfrac{ \alpha c^{-\frac{r}{1-r}}\left( c^{-\frac{r}{1-r}}+\alpha \left( 1+\frac{\ln c}{1-r}\right) \right) }{ \left( \alpha +c^{-\frac{r}{1-r}}\right) ^{2}}V. \end{aligned}$$

It is easy to see that \(\lim _{N\rightarrow \infty }\frac{d(N\times \pi _{U}^{*})}{dr}<0\). To examine the sign of \(\lim _{N\rightarrow \infty } \frac{d(\alpha N\times \pi _{F}^{*})}{dr}\), let \(f(c)\equiv \alpha +c^{- \frac{r}{1-r}}(1-\frac{\ln c}{1-r})\). Obviously, \(\lim _{N\rightarrow \infty } \frac{d(\alpha N\times \pi _{F}^{*})}{dr}\) and \(f(c)\) have the opposite signs. Now, observe that \(f(c)\) takes its unique minimum at \( c=e^{(1-r^{2})/r}\) because

$$\begin{aligned} \frac{\partial f(c)}{\partial c}=\frac{c^{\frac{1}{r-1}}}{\left( r-1\right) ^{2}}\left( r^{2}+\left( \ln c\right) r-1\right) \left\{ \begin{array}{lll} >0 &{} \quad \textit{if} &{} \, c>e^{\frac{1-r^{2}}{r}} \\ <0 &{} \quad \textit{if} &{} \, c<e^{\frac{1-r^{2}}{r}}, \end{array} \right. \end{aligned}$$

where \(f(e^{\frac{1-r^{2}}{r}})=\alpha -\frac{1}{re^{1+r}}<0\) if \(\alpha < \frac{1}{re^{1+r}}\) and \(f(e^{\frac{1-r^{2}}{r}})>0\) if \(\alpha >\frac{1}{ re^{1+r}}\). Because \(f(1)=\alpha +1>0\), \(\lim _{c\rightarrow \infty }f(c)=\alpha >0\), and \(\lim _{N\rightarrow \infty }\frac{d(\alpha N\times \pi _{F}^{*})}{dr}\) and \(f(c)\) have the opposite signs, it follows

$$\begin{aligned} \tfrac{d(\alpha N\pi _{F}^{*})}{dr}\left\{ \begin{array}{ll} \ge 0 &{} \quad \hbox {if } \alpha \le \frac{1}{re^{1+r}} \hbox { and } \underline{c}(\alpha ,r)<c<\overline{c}(\alpha ,r)\\ <0 &{} \quad \hbox {otherwise}, \end{array} \right. \end{aligned}$$

where \(\underline{c}(\alpha ,r)\) and \(\overline{c}(\alpha ,r)\) solve \(f(c)=0\), which completes the proof. \(\square \)

Proof of Proposition 6

As there are \(n\) favorites and \(m\) underdogs, total effort (\(TE\)) is given by \(TE=nx_{F}^{*}+mx_{U}^{*}\). Employing \(\theta ^{*}=\frac{ x_{U}^{*}}{x_{F}^{*}}\) and Proposition 1(a) and 1(b), it can be written explicitly as

$$\begin{aligned} TE=\frac{V}{c_{U}}\frac{r(\theta ^{*})^{r-1}}{\left( m(\theta ^{*})^{r}+n\right) ^{2}}\left( m(\theta ^{*})+n\right) ((m-1)(\theta ^{*})^{r}+n), \end{aligned}$$

or, more conveniently, as

$$\begin{aligned} TE=\frac{V}{c_{F}}\underset{=h(r,\theta ^{*})}{\underbrace{\frac{r\left( m\theta ^{*}+n\right) (m(\theta ^{*})^{r}+n-1)}{\left( m(\theta ^{*})^{r}+n\right) ^{2}}},} \end{aligned}$$

where we have employed that \(\theta ^{*}=\frac{\left( (m-1)(\theta ^{*})^{r}+n\right) (\theta ^{*})^{r}}{(m(\theta ^{*})^{r}+n-1)c}\) by (6) and \(c=\frac{c_{U}}{c_{F}}\) by definition.

As the derivative of \(TE\) with respect to \(r\) is given by

$$\begin{aligned} \frac{d(TE)}{dr}=\frac{V}{c_{F}}\left( \frac{\partial h(r,\theta ^{*})}{ \partial r}+\frac{\partial h(r,\theta ^{*})}{\partial \theta }\frac{ \partial \theta ^{*}}{\partial r}\right) , \end{aligned}$$

routine algebra, along with Lemma 2, yields

$$\begin{aligned} \lim \nolimits _{r\rightarrow 0}\frac{d(TE)}{dr}&= \frac{V}{c_{F}}\frac{ (m+cn)\left( m+n-1\right) \left( m+n\right) }{\left( m+n\right) ^{3}c},\end{aligned}$$
(15)
$$\begin{aligned} \lim \nolimits _{r\rightarrow 1}\dfrac{d(TE)}{dr}&= \left\{ \begin{array}{ll} \dfrac{V}{c_{F}}\dfrac{cm+n+mn(c-1)\ln \left( \frac{c+n-cn}{cm-m+1}\right) }{\frac{ \left( cm+n\right) ^{2}}{(m+n-1)}} &{} \;\textit{if} \; c<\frac{n}{n-1}\ \\ \dfrac{V}{c_{F}}\dfrac{n-1}{n} &{} \; \textit{if} \; c\ge \frac{n}{n-1}. \end{array} \right. \end{aligned}$$
(16)

From (15), it is straightforward to see that \( \lim _{r\rightarrow 0}\frac{d(TE)}{dr}>0\), proving part (a). Likewise, if \( c\ge \frac{n}{n-1}\), it is easy to see from (16) that \(\lim _{r\rightarrow 1}\frac{d(TE)}{dr}>0\). Suppose now \(c<\frac{n}{n-1}\) and let \(f(c)\equiv mc+n+mn\left( c-1\right) \ln (\frac{n-(n-1)c}{mc-(m-1)})\) . As all other terms are always positive, the sign of \(\lim \limits _{r \rightarrow 1}\frac{d(TE)}{dr}\) is the same as that of \(f(c)\). Note that \( f(1)=m\) and \(\lim \limits _{c\rightarrow \frac{n}{n-1}}f(c)=-\infty \), which together with the continuity assures that there exists \(\widehat{c}(n,m)\in (1,\frac{n}{n-1})\) such that \(f(\widehat{c}(n,m))=0\). To show uniqueness, note that the first and second derivatives of \(f(c)\) are given as

$$\begin{aligned} \frac{\partial f(c)}{\partial c}&= {-}\dfrac{m\left( m\left( n{-}1\right) c^{2}{-}\left( m{-}n{-}1\right) \left( n{-}1\right) c{-}n^{2}\right) }{\left( n{-}(n{-}1)c\right) \left( mc{-}(m{-}1)\right) }+mn\ln \left( \dfrac{n{-}(n{-}1)c}{mc{-}(m{-}1)}\right) ,\\ \frac{\partial ^{2}f(c)}{\partial c^{2}}&= -\dfrac{mn\left( m+n-1\right) \left( \left( m-n+1\right) c+\left( n-m+1\right) \right) }{\left( n-(n-1)c\right) ^{2}\left( cm-(m-1)\right) ^{2}}<0. \end{aligned}$$

Obviously, \(f(c)\) is concave as \(\frac{\partial ^{2}f(c)}{\partial c^{2}}<0\), which together with

$$\begin{aligned} \frac{\partial f(c)}{\partial c}|_{c=1}=m, f(c=1)=m\text { and } \frac{\partial f(c)}{\partial c}|_{c=\frac{n}{n-1}}=-\infty , \lim _{c\rightarrow \frac{n}{n-1}}f(c)=-\infty , \end{aligned}$$

assures that there exists a unique \(\widehat{c}(n,m)\in (1,\frac{n}{n-1})\) such that \(f(\widehat{c}(n,m))=0\). Moreover, because \(f(1)=m>0\) and the sign of \(\frac{d(TE)}{dr}\) is the same as that of \(f(c)\), we have

$$\begin{aligned} \frac{d(TE)}{dr}\left\{ \begin{array}{lll} >0 \quad \textit{if} \quad c\in (1,\widehat{c}(n,m)) \\ <0 \quad \textit{if} \quad c\in (\widehat{c}(n,m),\frac{n}{n-1}), \end{array} \right. \end{aligned}$$

which completes the proof. \(\square \)

Proof of Proposition 8

Let \(\pi _{ij}^{*}\) denote the payoff of type \(i\) in a pairwise contest when his opponent is of type \(j\). Also, let \(E[\pi _{i}^{*}]\) denote the expected payoff of type \(i\). Because the opponent is chosen randomly, the underdog’s expected payoff is given by

$$\begin{aligned} E[\pi _{U}^{*}]=\frac{m-1}{m+n-1}\pi _{UU}^{*}+\frac{n}{m+n-1}\pi _{UF}^{*}. \end{aligned}$$

Differentiating it with respect to \(r\) gives

$$\begin{aligned} \frac{dE[\pi _{U}^{*}]}{dr}=\frac{m-1}{m+n-1}\frac{d\pi _{UU}^{*}}{dr }+\frac{n}{m+n-1}\frac{d\pi _{UF}^{*}}{dr}. \end{aligned}$$

Note that \(\frac{d\pi _{UF}^{*}}{dr}<0\) by Proposition 2(b) and employing Proposition 1(a) and (c), it immediately follows that \(\frac{d\pi _{UU}^{*}}{dr}=-\frac{V}{4}<0\). Because \(\frac{dE[\pi _{U}^{*}]}{dr}\) is a convex combination of \(\frac{d\pi _{UU}^{*}}{dr}<0\) and \(\frac{d\pi _{UF}^{*}}{dr}<0\), it must be that \(\frac{dE[\pi _{U}^{*}]}{dr}<0\), which proves part (a). To prove part (b), note that the favorite’s expected payoff is given by

$$\begin{aligned} E[\pi _{F}^{*}]=\frac{n-1}{m+n-1}\pi _{FF}^{*}+\frac{m}{m+n-1}\pi _{FU}^{*}. \end{aligned}$$

Differentiating it with respect to \(r\) yields

$$\begin{aligned} \frac{dE[\pi _{F}^{*}]}{dr}=\frac{n-1}{m+n-1}\frac{d\pi _{FF}^{*}}{dr }+\frac{m}{m+n-1}\frac{d\pi _{FU}^{*}}{dr}, \end{aligned}$$

where \(\pi _{FF}^{*}=\dfrac{2-r}{4}V\) and \(\pi _{FU}^{*}=\dfrac{ c^{r}(c^{r}-r+1)}{\left( c^{r}+1\right) ^{2}}V\) are obtained by using Proposition 1(a) and (c). Routine algebra yields

$$\begin{aligned} \frac{dE[\pi _{F}^{*}]}{dr}=\frac{n{-}1}{m+n{-}1}\left( -\frac{V}{4}\right) +\frac{m}{ m+n{-}1}\frac{c^{r}((1+c^{r}{-}r+rc^{r})\ln c-(1+c^{r}))}{\left( 1+c^{r}\right) ^{3}}V. \end{aligned}$$

Taking now its limit as \(r\rightarrow 0\) gives

$$\begin{aligned} \lim _{r\rightarrow 0}\frac{dE[\pi _{F}^{*}]}{\partial r}=\frac{m\ln c-(m+n-1)}{4(m+n-1)}V. \end{aligned}$$

Clearly, \(\frac{dE[\pi _{F}^{*}]}{\partial r}<0\) if \(c<e^{1+(n-1)/m}\) and \(\frac{dE[\pi _{F}^{*}]}{\partial r}>0\) if \(c>e^{1+(n-1)/m}\). Finally, taking the limit as \(r\rightarrow 1\) yields

$$\begin{aligned} \lim _{r\rightarrow 1}\frac{dE[\pi _{F}^{*}]}{\partial r}=m(c+1)^{3}\left( \dfrac{4c(2c\ln c-c-1)}{(c+1)^{3}}-\dfrac{n-1}{m}\right) V. \end{aligned}$$

Similarly, \(\lim \limits _{r\rightarrow 1}\frac{\partial (E[\pi _{F}^{*}]) }{\partial r}>0\) if \(\frac{4c(2c\ln c-c-1)}{(c+1)^{3}}>\frac{n-1}{m}\) and \( \lim \limits _{r\rightarrow 1}\frac{\partial (E[\pi _{F}^{*}])}{\partial r} <0\) if \(\frac{4c(2c\ln c-c-1)}{(c+1)^{3}}<\frac{n-1}{m}\). Because \(\frac{ 4c(2c\ln c-c-1)}{(c+1)^{3}}\) has only one critical point over \((1,\infty )\) that turns out to be its maximizer, \(\frac{4c(2c\ln c-c-1)}{(c+1)^{3}}>\frac{ n-1}{m}\) if and only if \(s>\dfrac{n-1}{m}\) and \(\underline{c}(m,n)<c< \overline{c}(m,n)\), where \(s\approx 1.06\) uniquely solves \(\max \limits _{c\in (1,\infty )}\{\frac{4c(2c\ln c-c-1)}{(c+1)^{3}}\}\) and \(\underline{c}(m,n)< \overline{c}(m,n)\) solve \(\frac{4c(2c\ln c-c-1)}{(c+1)^{3}}-\frac{n-1}{m}=0\) . This completes the proof because these findings clearly imply that \( \lim \limits _{r\rightarrow 1}\frac{\partial (E[\pi _{F}^{*}])}{\partial r} >0\) if \(\frac{n-1}{m}<s\) and \(\underline{c}(m,n)\) \(<c<\overline{c}(m,n)\) and \( \lim \limits _{r\rightarrow 1}\frac{\partial (E[\pi _{F}^{*}])}{\partial r} <0\) if otherwise. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim, M. Accuracy in contests: players’ perspective. Rev Econ Design 19, 67–90 (2015). https://doi.org/10.1007/s10058-015-0166-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10058-015-0166-9

Keywords

JEL Classification

Navigation