Skip to main content

Advertisement

Log in

Do individual constraints induce flexibility of visual field dependence following a virtual immersion? Effects of perceptive style and cybersickness

  • Original Article
  • Published:
Virtual Reality Aims and scope Submit manuscript

Abstract

Accurately perceiving the gravitational direction is key to successful interaction in our terrestrial environment. In this context field dependence (FD), the importance given to static and/or dynamic visual cues has largely been discussed. Although first considered a trait, several studies suggest FD be flexible in response to postural or visual contexts and to poor virtual reality user experience. The aim of this study was therefore to determine the influence of a disruptive virtual immersion on the level of static and dynamic FD. Forty-five participants were exposed to a virtual maritime environment for up to 14 min. Cybersickness and sense of presence were measured. Before and after virtual immersion, the rod and frame test and the rod and disk test were performed to assess static and dynamic FD, respectively. We demonstrated a significant decrease in both levels of FD after immersion in initially more dependent participants. Decrease in static FD was explained by high initial static FD and severe cybersickness, while decrease in dynamic FD was only explained by the initial level of dynamic FD. In this study, we provide evidence confirming FD flexibility, likely reflecting an adaptation process to environmental or individual-related constraints. Yet, static and dynamic FD seems to rely on separate mechanisms, highlighting the necessity to specify which characteristic of visual information (static or dynamic) individuals depend on when assessing their FD. Our results question the reliability of virtual reality for perceptive or motor diagnoses without considering its consequences, specifically in vulnerable populations such as the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available on figshare, by following this link: https://doi.org/10.6084/m9.figshare.19619589.v1.

References

  • Bockelman P, Lingum D (2017) Factors of cybersickness. In Stephanidis C (ed) HCI international — posters’ extended abstracts, vol 714, p 3‑8, Springer, Berlin. https://doi.org/10.1007/978-3-319-58753-0_1,

  • Bouchard S, Robillard G, Renaud P (2007) Revising the factor structure of the simulator sickness questionnaire. Annu Rev Cyberther Telemed 5(Summer):128–137

    Google Scholar 

  • Bos JE, Bles W, Groen EL (2008) A theory on visually induced motion sickness. Displays 29(2):47–57. https://doi.org/10.1016/j.displa.2007.09.002

    Article  Google Scholar 

  • Bray A, Subanandan A, Isableu B, Ohlmann T, Golding JF, Gresty MA (2004) We are most aware of our place in the world when about to fall. Curr Biol 14(15):R609–R610. https://doi.org/10.1016/j.cub.2004.07.040

    Article  Google Scholar 

  • Brenet F, Ohlmann T, Marendaz C (1988) Interaction vision/posture lors de la localisation d’une cible enchâssée. Bull Psychol 388:22–30

    Google Scholar 

  • Bringoux L, Scotto Di Cesare C, Borel L, Macaluso T, Sarlegna FR (2016) Do visual and vestibular inputs compensate for somatosensory loss in the perception of spatial orientation? Insights from a deafferented patient. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2016.00181

    Article  Google Scholar 

  • De Leo G, Diggs LA, Radici E, Mastaglio TW (2014) Measuring sense of presence and user characteristics to predict effective training in an online simulated virtual environment. Simul Healthc 9(1):1–6

    Article  Google Scholar 

  • Dichgans J, Brandt T (1978) Visual-vestibular interaction: effects on self-motion perception and postural control. In: Perception, pp 755–804. Springer, Berlin

  • Dichgans J, Held R, Young LR, Brandt T (1972) Moving visual scenes influence the apparent direction of gravity. Science 178(4066):1217–1219. https://doi.org/10.1126/science.178.4066.1217

    Article  Google Scholar 

  • Golding JF (2006) Predicting individual differences in motion sickness susceptibility by questionnaire. Personal Individ Differ 41(2):237–248. https://doi.org/10.1016/j.paid.2006.01.012

    Article  Google Scholar 

  • Guerraz M, Poquin D, Ohlmann T (1998) The role of head-centric spatial reference with a static and kinetic visual disturbance. Percept Psychophys 60(2):287–295. https://doi.org/10.3758/BF03206037

    Article  Google Scholar 

  • Hecht D, Reiner M (2007) Field dependency and the sense of object-presence in haptic virtual environments. Cyberpsychol Behav 10(2):243–251. https://doi.org/10.1089/cpb.2006.9962

    Article  Google Scholar 

  • Isableu B, Ohlmann T, Crémieux J, Amblard B (1998) How dynamic visual field dependence–independence interacts with the visual contribution to postural control. Hum Mov Sci 17(3):367–391. https://doi.org/10.1016/S0167-9457(98)00005-0

    Article  Google Scholar 

  • Isableu B, Ohlmann T, Cremieux J, Vuillerme N, Amblard B, Gresty MA (2010) Individual differences in the ability to identify, select and use appropriate frames of reference for perceptuo-motor control. Neuroscience 169(3):1199–1215. https://doi.org/10.1016/j.neuroscience.2010.05.072

    Article  Google Scholar 

  • Keshavarz B, Hecht H (2011) Validating an efficient method to quantify motion sickness. Hum Factors J Hum Factors Ergon Soc 53(4):415–426. https://doi.org/10.1177/0018720811403736

    Article  Google Scholar 

  • Mahboobin A, Loughlin PJ, Redfern MS, Sparto PJ (2005) Sensory re-weighting in human postural control during moving-scene perturbations. Exp Brain Res 167(2):260–267. https://doi.org/10.1007/s00221-005-0053-7

    Article  Google Scholar 

  • Maneuvrier A, Decker LM, Renaud P, Ceyte G, Ceyte H (2021) Field (In)dependence flexibility following a virtual immersion is associated with cybersickness and sense of presence. Front Virtual Real 2:706712. https://doi.org/10.3389/frvir.2021.706712

    Article  Google Scholar 

  • Messick S (1976) Individuality in learning. Jossey-Bass

    Google Scholar 

  • Niehof N, Perdreau F, Koppen M, Medendorp WP (2019) Contributions of optostatic and optokinetic cues to the perception of vertical. J Neurophysiol 122(2):480–489. https://doi.org/10.1152/jn.00740.2018

    Article  Google Scholar 

  • Ohlmann T (1988) La perception de la verticale. Variabilité interindividuelle dans la dépendance à l’égard des référentiels spatiaux. Université de Paris VIII

  • Ohlmann T (1990) Evocabilité différentielle des référentiels spatiaux, posture et orientation spatiale. Pratiques sportives et modélisation du geste, 215–240.

  • Ohlmann T, Marendaz C (1991) Vicarious processes involved in selection/control of frames of reference and spatial aspects of field dependence-independence. In: Wapner S, Demick J (eds) Field dependence-independence: cognitive style across life Span. Publisher Hillsdale, New Jersey, pp 105–129

    Google Scholar 

  • Pavlou M, Quinn C, Murray K, Spyridakou C, Faldon M, Bronstein AM (2011) The effect of repeated visual motion stimuli on visual dependence and postural control in normal subjects. Gait Posture 33(1):113–118. https://doi.org/10.1016/j.gaitpost.2010.10.085

    Article  Google Scholar 

  • Rebenitsch L, Owen C (2016) Review on cybersickness in applications and visual displays. Virtual Real 20(2):101–125. https://doi.org/10.1007/s10055-016-0285-9

    Article  Google Scholar 

  • Reuchlin M (1978) Processus vicariants et différences individuelles. J De Psychol 2:133–145

    Google Scholar 

  • Robillard G, Bouchard S, Renaud P, Cournoyer LG (2002) Validation canadienne-française de deux mesures importantes en réalité virtuelle: l’Immersive Tendencies Questionnaire et le Presence Questionnaire. Poster presented at the 25e congrès annuel de la Société Québécoise pour la Recherche en Psychologie (SQRP), Trois-Rivières

  • Shafer DM, Carbonara CP, Korpi MF (2017) Modern virtual reality technology: cybersickness, sense of presence, and gender. Media Psychol Rev 11(2):1

    Google Scholar 

  • Souchet AD, Philippe S, Lourdeaux D, Leroy L (2021) Measuring visual fatigue and cognitive load via eye-tracking while learning with virtal reality head-mounted displays: a review. Int J Hum-Comput Interact, 1–24.

  • Stanney K, Fidopiastis C, Foster L (2020) Virtual reality is sexist: but it does not have to be. Front Robot AI 7:4. https://doi.org/10.3389/frobt.2020.00004

    Article  Google Scholar 

  • Tinajero C, Páramo MF (1998) Field dependence-independence cognitive style and academic achievement: a review of research and theory. Eur J Psychol Educ 13(2):227–251. https://doi.org/10.1007/BF03173091

    Article  Google Scholar 

  • Ukai K, Howarth PA (2008) Visual fatigue caused by viewing stereoscopic motion images: background, theories, and observations. Displays 29(2):106–116

    Article  Google Scholar 

  • Vallerand RJ (1989) Vers une méthodologie de validation trans-culturelle de questionnaires psychologiques : Implications pour la recherche en langue française. Can Psychol 30(4):662–680. https://doi.org/10.1037/h0079856

    Article  Google Scholar 

  • Weech S, Calderon CM, Barnett-Cowan M (2020) Sensory down-weighting in visual-postural coupling is linked with lower cybersickness. Front Virtual Real 1:10. https://doi.org/10.3389/frvir.2020.00010

    Article  Google Scholar 

  • Weech S, Kenny S, Barnett-Cowan M (2019) Presence and cybersickness in virtual reality are negatively related: a review. Front Psychol 10:158. https://doi.org/10.3389/fpsyg.2019.00158

    Article  Google Scholar 

  • Witkin HA, Asch SE (1948) Studies in space orientation. IV. Further experiments on perception of the upright with displaced visual fields. J Exp Psychol 38(6):762–782. https://doi.org/10.1037/h0053671

    Article  Google Scholar 

  • Witkin HA, Goodenough DR, Karp SA (1967) Stability of cognitive style from childhood to young adulthood. J Pers Soc Psychol 7(3):291–300. https://doi.org/10.1037/h0025070

    Article  Google Scholar 

  • Barrett GV, Thornton CL (1968) Relationship between perceptual style and simulator sickness. J Appl Psychol 52:304–308. https://doi.org/10.1037/h0026013

  • Fulvio JM, Ji M, Rokers B (2021) Variations in visual sensitivity predict motion sickness in virtual reality. Entertain Comput 38:100423. https://doi.org/10.1016/j.entcom.2021.100423

  • Isableu B, Ohlmann T, Crémieux J, Amblard B (1997) Selection of spatial frame of reference and postural control variability. Exp Brain Res 114:584–589. https://doi.org/10.1007/PL00005667

  • Maneuvrier A, Decker LM, Ceyte H, et al (2020) Presence Promotes Performance on a Virtual Spatial Cognition Task: Impact of Human Factors on Virtual Reality Assessment. Front Virtual Real 1:571713. https://doi.org/10.3389/frvir.2020.571713

  • Rebenitsch L, Owen C (2021) Estimating cybersickness from virtual reality applications. Virtual Real 25:165–174. https://doi.org/10.1007/s10055-020-00446-6

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

HC conceived and designed the experiment. LF conducted the experiment, collected and processed the data. All authors analyzed and discussed the results, wrote, reviewed and approved the manuscript.

Corresponding author

Correspondence to Hadrien Ceyte.

Ethics declarations

Conflict of interests

The authors have no relevant interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fantin, L., Ceyte, G., Maïni, E. et al. Do individual constraints induce flexibility of visual field dependence following a virtual immersion? Effects of perceptive style and cybersickness. Virtual Reality 27, 917–928 (2023). https://doi.org/10.1007/s10055-022-00703-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-022-00703-w

Keywords

Navigation