Skip to main content

Advertisement

Log in

A hybrid optical–mechanical calibration procedure for the Scalable-SPIDAR haptic device

Virtual Reality Aims and scope Submit manuscript

Abstract

In this research, a simple, yet, efficient calibration procedure is presented in order to improve the accuracy of the Scalable-SPIDAR haptic device. The two-stage procedure aims to reduce discrepancies between measured and actual values. First, we propose a new semi-automatic procedure for the initialization of the haptic device. To perform this initialization with a high level of accuracy, an infrared optical tracking device was used. Furthermore, audio and haptic cues were used to guide the user during the initialization process. Second, we developed two calibration methods based on regression techniques that effectively compensate for the errors in tracked position. Both neural networks and support vector regression methods were applied to calibrate the position errors present in the haptic device readings. A comparison between these two regression methods was carried out to show the underlying algorithm and to indicate the inherent advantages and limitations for each method. Initial evaluation of the proposed procedure indicated that it is possible to improve accuracy by reducing the Scalable-SPIDAR’s average absolute position error to about 6 mm within a 1 m × 1 m × 1 m workspace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  • Advanced Realtime Tracking GmbH (2003) ARTtrack1 & DTrack—Manual Version 1.18

  • Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press Inc, New York

    MATH  Google Scholar 

  • Bloch G et al (2008) Support vector regression from simulation data and few experimental samples. Inf Sci 178(20):3813–3827

    Article  Google Scholar 

  • Boudoin P et al (2010) SPIDAR calibration based on neural networks versus optical tracking. BT—artificial neural networks and intelligent information processing. In: Proceedings of the 6th international workshop on artificial neural networks and intelligent information processing, pp 87–98

  • Bouguila L, Ishii M, Sato M (2000) Effect of coupling haptics and stereopsis on depth perception in virtual environment. In: Proceedings of the 1st workshop on haptic human computer interaction, 31st August–1st Sept 2000. pp 54–62

  • Briggs W (1999) Magnetic calibration by tetrahedral interpolation. In: Proceedings of NIST-ASME industrial virtual reality symposium, Chicago, pp 27–32

  • Bryson S (1992) Measurement and calibration of static distortion of position data from 3D trackers. In: Proceedings of SPIE conference. Stereoscopic displays and applications III, pp 244–255

  • Buoguila L, Ishii M, Sato M (2000) Multi-modal haptic device for large-scale virtual environments. In: Proceedings of the eighth ACM international conference on multimedia. MULTIMEDIA ’00. ACM, New York, pp 277–283

  • Burdea GC (1996) Force and touch feedback for virtual reality. Wiley, New York

    Google Scholar 

  • Ellis SR et al (1999) Sensor spatial distortion, visual latency, and update rate effects\non 3D tracking in virtual environments. In: Proceedings IEEE virtual reality (Cat no 99CB36316), pp 218–221

  • Faroque S et al (2015) Haptic virtual reality training environment for micro-robotic cell injection. In: Kajimoto H, Ando H, Kyung K-U (eds) Haptic interaction: perception, devices and applications. Springer, Tokyo, pp 245–249

    Chapter  Google Scholar 

  • Fletcher C et al (2013) The development of an integrated haptic VR machining environment for the automatic generation of process plans. Comput Ind 64(8):1045–1060

    Article  Google Scholar 

  • Fuchs P, Moreau G, Guitton P (2011) Virtual reality: concepts and technologies, 1st edn. CRC Press Inc, Boca Raton

    Google Scholar 

  • Ghazisaedy M et al (1995) Ultrasonic calibration of a magnetic tracker in a virtual reality space. In: Proceedings virtual reality annual international symposium ’95, pp 179–188

  • Group S (2005) SPIDAR-G/AHS1.0A user’s manual Ver. 2.0., pp 1–44

  • Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993

    Article  Google Scholar 

  • Harders M et al (2009) Calibration, registration, and synchronization for high precision augmented reality haptics. IEEE Trans Vis Comput Graph 15(1):138–149

    Article  Google Scholar 

  • Hastie TJ, Tibshirani RJ, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York

    Book  MATH  Google Scholar 

  • Hayward V et al (2004) Haptic interfaces and devices. Sensor Rev 24(1):16–29

    Article  MathSciNet  Google Scholar 

  • Hirata Y, Sato M (1992) 3-dimensional interface device for virtual work space. In: Proceedings of the 1992 lEEE/RSJ international conference on intelligent robots and systems, vol 2, pp 889–896

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    Article  Google Scholar 

  • Huang J-N et al (1992) A comparison of projection pursuit and neural network regression modeling. Adv Neural Inf Process Syst 4:1159–1166

    Google Scholar 

  • ISO 5725-1 (1994) Accuracy (trueness and precision) of measurement methods and results—part 1: general principles and definitions. International Organization for Standardization, Geneva

  • Ikits M et al (2001) An improved calibration framework for electromagnetic tracking devices. Proc IEEE Virtual Real 2001:63–70

    Google Scholar 

  • Ikits M, Hansen CD, Johnson CR (2003) A comprehensive calibration and registration procedure for the visual haptic workbench. In: Proceedings of the workshop on virtual environments 2003. EGVE’03. ACM, New York, pp 247–254

  • Ikits M et al (2000) The visual haptic workbench. In: Proceedings of PHANToM users group workshop. pp 46–49

  • Jayaram U, Repp R (2002) Integrated real-time calibration of electromagnetic tracking of user motions for engineering applications in virtual environments. J Mech Des 124:623

    Article  Google Scholar 

  • Kecman V (2001) Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. MIT Press, Cambridge

    MATH  Google Scholar 

  • Kecman V (2005) Support vector machines—an introduction. In: Wang L (ed) Support vector machines: theory and applications. Springer, Berlin, pp 1–47

    Google Scholar 

  • Kenwright DN, Lane DA (1996) Interactive time-dependent particle tracing using tetrahedral decomposition. IEEE Trans Vis Comput Graph 2(2):120–129

    Article  Google Scholar 

  • Kim S et al (2002) Tension based 7-DOF force feedback device: SPIDAR-G. In: Proceedings, IEEE virtual reality. pp 283–284

  • Kindratenko V (1999) Calibration of electromagnetic tracking devices. Virtual Real 4:139–150

    Article  Google Scholar 

  • Kindratenko V (2000) A survey of electromagnetic position tracker calibration techniques. Virtual Real 5(3):169–182

    Article  Google Scholar 

  • Kindratenko V, Bennett A (2000) Evaluation of rotation correction techniques for electromagnetic position tracking systems. In: Mulder J, van Liere R (eds) Virtual environments 2000 SE—3. Eurographics. Springer, Vienna, pp 13–22

    Chapter  Google Scholar 

  • Kindratenko VV, Sherman WR (2005) Neural network-based calibration of electromagnetic tracking systems. Virtual Real. 9(1):70–78

    Article  Google Scholar 

  • Knoerlein B, Harders M (2011) Comparison of tracker-based to tracker-less haptic device calibration. In: World haptics conference (WHC), 2011 IEEE, pp 119–124

  • Kunzler U, Runde C (2005) Kinesthetic haptics integration into large-scale virtual environments. In: Eurohaptics conference, 2005 and symposium on haptic interfaces for virtual environment and teleoperator systems, 2005. World haptics 2005. First Joint, pp 551–556

  • Kwiatkowska EJ, Fargion GS (2003) Application of machine-learning techniques toward the creation of a consistent and calibrated global chlorophyll concentration baseline dataset using remotely sensed ocean color data. IEEE Trans Geosci Remote Sens 41(12):2844–2860

    Article  Google Scholar 

  • Livingston MA, State A (1997) Magnetic tracker calibration for improved augmented reality registration. Presence Teleoperators Virtual Environ 6(5):532–546

    Article  Google Scholar 

  • Melin P, Castillo O (2005) Studies in fuzziness and soft computing, volume 172. Soft Comput 18(3–4):318

    Google Scholar 

  • Meyer K, Applewhite HL, Biocca FA (1992) A survey of position trackers. Presence Teleoper Virtual Environ 1(2):173–200

    Article  Google Scholar 

  • Moreira AHJ et al (2014) Electromagnetic tracker feasibility in the design of a dental superstructure for edentulous patients. In: IEEE MeMeA 2014—IEEE international symposium on medical measurements and applications, Proceedings, pp 1–6

  • Pao Y-H (1989) Adaptive pattern recognition and neural networks. Addison-Wesley Longman Publishing Co., Inc, Boston

    MATH  Google Scholar 

  • Ramsamy P et al (2006) Using haptics to improve immersion in virtual environments. In: Alexandrov V et al (eds) Computational science—ICCS 2006 SE—81, Lecture Notes in Computer Science. Springer, Berlin, pp 603–609

  • Reinig K, Tracy R, Gilmore H, Mahalik T (1997) Some calibration information for a Phantom 1.5 a. In: Proceedings of the second PHANToM user’s group workshop. Dedham, Massachusetts, pp 70–73

  • Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222

    Article  MathSciNet  Google Scholar 

  • Srinivasan MA, Basdogan C (1997) Haptics in virtual environments: taxonomy, research status, and challenges. Comput Graph 21(4):393–404

    Article  Google Scholar 

  • Srinivasan MA (1995) Virtual reality: scientific and technical challenges. In: Durlach NI, Mavor AS (eds) Report of the committee on virtual reality research and development, National Research Council. National Academy Press, Washington, pp 161–187

    Google Scholar 

  • Suykens JAK et al (2002) Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48(1–4):85–105

    Article  MATH  Google Scholar 

  • Tukey JW (1977) Schematic and summaries (pictures and numbers). In: Tukey JW (ed) Exploratory data analysis. Addison-Wesley Inc., pp 27–55

  • Vapnik V, Golowich SE, Smola AJ (1997) Support vector method for function approximation, regression estimation and signal processing. In: Mozer M, Jordan MI, Petsche T (eds) Advances in neural information processing systems 9—proceedings of the 1996 neural information processing systems conference (NIPS 1996). MIT Press, Cambridge, Dever, pp 281–287

  • Welch G, Foxlin E (2002) Motion tracking: no silver bullet, but a respectable arsenal. Comput Graph Appl IEEE 22(6):24–38

    Article  Google Scholar 

  • Xia P et al (2012) A new type haptics-based virtual environment system for assembly training of complex products. Int J Adv Manuf Technol 58(1):379–396

    Article  Google Scholar 

  • Yu H, Wilamowski BM (2011) Levenberg–Marquardt training. In: Industrial electronics handbook—intelligent systems, vol 5. CRC Press, Inc., pp 12–1–12–15

  • Zachmann G (1997) Distortion correction of magnetic fields for position tracking. In: Proceedings computer graphics international, pp 213–220, 251

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M’hamed Frad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frad, M., Maaref, H., Otmane, S. et al. A hybrid optical–mechanical calibration procedure for the Scalable-SPIDAR haptic device. Virtual Reality 21, 109–125 (2017). https://doi.org/10.1007/s10055-016-0303-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-016-0303-y

Keywords

Navigation