Skip to main content

Advertisement

Log in

R106C TFG variant causes infantile neuroaxonal dystrophy “plus” syndrome

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

TFG (tropomyosin-receptor kinase fused gene) encodes an essential protein in the regulation of vesicular trafficking between endoplasmic reticulum and Golgi apparatus. The homozygous variant c.316C > T within TFG has been previously associated with a complicated hereditary spastic paraplegia (HSP) phenotype in two unrelated Indian families. Here, we describe the first Italian family with two affected siblings harboring the same variant, who in childhood were classified as infantile neuroaxonal dystrophy (INAD) based on clinical and neuropathological findings. Twenty years after the first diagnosis, exome sequencing was instrumental to identify the genetic cause of this disorder and clinical follow-up of patients allowed us to reconstruct the natural history of this clinical entity. Investigations on patient’s fibroblasts demonstrate the presence of altered mitochondrial network and inner membrane potential, associated with metabolic impairment. Our study highlights phenotypic heterogeneity characterizing individuals carrying the same pathogenic variant in TFG and provides an insight on tight connection linking mitochondrial efficiency and neuronal health to vesicular trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Johnson A, Bhattacharya N, Hanna M, Pennington JG, Schuh AL, Wang L, Otegui MS, Stagg SM, Audhya A (2015) TFG clusters COPII-coated transport carriers and promotes early secretory pathway organization. EMBO J 34(6):811–827. https://doi.org/10.15252/embj.201489032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Yagi T, Ito D, Suzuki N (2016) TFG-related neurologic disorders: new insights into relationships between endoplasmic reticulum and neurodegeneration. J Neuropathol Exp Neurol 75(4):299–305. https://doi.org/10.1093/jnen/nlw009

    Article  PubMed  CAS  Google Scholar 

  3. Ishiura H, Sako W, Yoshida M, Kawarai T, Tanabe O, Goto J, Takahashi Y, Date H, Mitsui J, Ahsan B, Ichikawa Y, Iwata A, Yoshino H, Izumi Y, Fujita K, Maeda K, Goto S, Koizumi H, Morigaki R, Ikemura M, Yamauchi N, Murayama S, Nicholson GA, Ito H, Sobue G, Nakagawa M, Kaji R, Tsuji S (2012) The TRK-fused gene is mutated in hereditary motor and sensory neuropathy with proximal dominant involvement. Am J Hum Genet 91(2):320–329. https://doi.org/10.1016/j.ajhg.2012.07.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lee SS, Lee HJ, Park JM, Hong YB, Park KD, Yoo JH, Koo H, Jung SC, Park HS, Lee JH, Lee MG, Hyun YS, Nakhro K, Chung KW, Choi BO (2013) Proximal dominant hereditary motor and sensory neuropathy with proximal dominance association with mutation in the TRK-fused gene. JAMA Neurol 70(5):607–615. https://doi.org/10.1001/jamaneurol.2013.1250

    Article  PubMed  Google Scholar 

  5. Alavi A, Shamshiri H, Nafissi S, Khani M, Klotzle B, Fan JB, Steemers F, Elahi E (2015) HMSN-P caused by p.Pro285Leu mutation in TFG is not confined to patients with far east ancestry. Neurobiol Aging 36(3):1606.e1–1606.e7. https://doi.org/10.1016/j.neurobiolaging.2014.11.021

    Article  CAS  Google Scholar 

  6. Yagi T, Ito D, Suzuki N (2014) Evidence of TRK-fused gene (TFG1) function in the ubiquitin-proteasome system. Neurobiol Dis 66:83–91. https://doi.org/10.1016/j.nbd.2014.02.011

    Article  PubMed  CAS  Google Scholar 

  7. Tsai PC, Huang YH, Guo YC, Wu HT, Lin KP, Tsai YS, Liao YC, Liu YT, Liu TT, Kao LS, Yet SF, Fann MJ, Soong BW, Lee YC (2014) A novel TFG mutation causes Charcot-Marie-Tooth disease type 2 and impairs TFG function. Neurology 83(10):903–912. https://doi.org/10.1212/WNL.0000000000000758

    Article  PubMed  CAS  Google Scholar 

  8. Khani M, Shamshiri H, Alavi A, Nafissi S, Elahi E (2016) Identification of novel TFG mutation in HMSN-P pedigree: emphasis on variable clinical presentations. J Neurol Sci 369:318–323. https://doi.org/10.1016/j.jns.2016.08.035

    Article  PubMed  CAS  Google Scholar 

  9. Beetz C, Johnson A, Schuh AL, Thakur S, Varga RE, Fothergill T, Hertel N, Bomba-Warczak E, Thiele H, Nürnberg G, Altmüller J, Saxena R, Chapman ER, Dent EW, Nürnberg P, Audhya A (2013) Inhibition of TFG function causes hereditary axon degeneration by impairing endoplasmic reticulum structure. Proc Natl Acad Sci U S A 110(13):5091–5096. https://doi.org/10.1073/pnas.1217197110

    Article  PubMed  PubMed Central  Google Scholar 

  10. Harlalka GV, McEntagart ME, Gupta N, Skrzypiec AE, Mucha MW, Chioza BA, Simpson MA, Sreekantan-Nair A, Pereira A, Günther S, Jahic A, Modarres H, Moore-Barton H, Trembath RC, Kabra M, Baple EL, Thakur S, Patton MA, Beetz C, Pawlak R, Crosby AH (2016) Novel genetic, clinical, and pathomechanistic insights into TFG-associated hereditary spastic paraplegia. Hum Mutat 37(11):1157–1161. https://doi.org/10.1002/humu.23060

    Article  PubMed  CAS  Google Scholar 

  11. Elsayed LE, Mohammed IN, Hamed AA, Elseed MA, Johnson A, Mairey M, Mohamed HE, Idris MN, Salih MA, El-Sadig SM, Koko ME, Mohamed AY, Raymond L, Coutelier M, Darios F, Siddig RA, Ahmed AK, Babai AM, Malik HM, Omer ZM, Mohamed EO, Eltahir HB, Magboul NA, Bushara EE, Elnour A, Rahim SM, Alattaya A, Elbashir MI, Ibrahim ME, Durr A, Audhya A, Brice A, Ahmed AE, Stevanin G (2016) Hereditary spastic paraplegias: identification of a novel SPG57 variant affecting TFG oligomerization and description of HSP subtypes in Sudan. Eur J Hum Genet 25(1):100–110. https://doi.org/10.1038/ejhg.2016.108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Tariq H, Naz S (2017) TFG associated hereditary spastic paraplegia: an addition to the phenotypic spectrum. Neurogenetics 18(2):105–109. https://doi.org/10.1007/s10048-017-0508-6

    Article  PubMed  CAS  Google Scholar 

  13. Invernizzi F, D’Amato I, Jensen PB, Ravaglia S, Zeviani M, Tiranti V (2012) Microscale oxygraphy reveals OXPHOS impairment in MRC mutant cells. Mitochondrion 12(2):328–335. https://doi.org/10.1016/j.mito.2012.01.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Magini P, Pippucci T, Tsai IC, Coppola S, Stellacci E, Bartoletti-Stella A, Turchetti D, Graziano C, Cenacchi G, Neri I, Cordelli DM, Marchiani V, Bergamaschi R, Gasparre G, Neri G, Mazzanti L, Patrizi A, Franzoni E, Romeo G, Bordo D, Tartaglia M, Katsanis N, Seri M (2014) A mutation in PAK3 with a dual molecular effect deregulates the RAS/MAPK pathway and drives an X-linked syndromic phenotype. Hum Mol Genet 23(13):3607–3617

    Article  PubMed  CAS  Google Scholar 

  15. Pippucci T, Benelli M, Magi A, Martelli PL, Magini P, Torricelli F, Casadio R, Seri M, Romeo G (2011) EX-HOM (EXome HOMozygosity): a proof of principle. Hum Hered 72:45–53

    Article  PubMed  Google Scholar 

  16. Magi A, Tattini L, Palombo F, Benelli M, Gialluisi A, Giusti B, Abbate R, Seri M, Gensini GF, Romeo G, Pippucci T (2014) H3M2: detection of runs of homozygosity from whole-exome sequencing data. Bioinformatics 30:2852–2859

    Article  PubMed  CAS  Google Scholar 

  17. Bugiani M, Invernizzi F, Alberio S, Briem E, Lamantea E, Carrara F, Moroni I, Farina L, Spada M, Donati MA, Uziel G, Zeviani M (2004) Clinical and molecular findings in children with complex I deficiency. Biochim Biophys Acta 1659:136–147

    Article  PubMed  CAS  Google Scholar 

  18. Tiranti V, Galimberti C, Nijtmans L, Bovolenta S, Perini MP, Zeviani M (1999) Characterization of SURF-1 expression and Surf-1p function in normal and disease conditions. Hum Mol Genet 8:2533–2540. https://doi.org/10.1093/hmg/8.13.2533

    Article  PubMed  CAS  Google Scholar 

  19. Nardocci N, Zorzi G, Farina L, Binelli S, Scaioli W, Ciano C, Verga L, Angelini L, Savoiardo M, Bugiani O (1999) Infantile neuroaxonal dystrophy: clinical spectrum and diagnostic criteria. Neurology 52(7):1472–1478

    Article  PubMed  CAS  Google Scholar 

  20. Morgan NV, Westaway SK, Morton JE, Gregory A, Gissen P, Sonek S, Cangul H, Coryell J, Canham N, Nardocci N, Zorzi G, Pasha S, Rodriguez D, Desguerre I, Mubaidin A, Bertini E, Trembath RC, Simonati A, Schanen C, Johnson CA, Levinson B, Woods CG, Wilmot B, Kramer P, Gitschier J, Maher ER, Hayflick SJ (2006) PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet 38(7):752–754 Erratum in: Nat Genet 2006 Aug;38(8):957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Witte K, Schuh AL, Hegermann J, Sarkeshik A, Mayers JR, Schwarze K, Yates JR 3rd, Eimer S, Audhya A (2011) TFG-1 function in protein secretion and oncogenesis. Nat Cell Biol 13(5):550–558. https://doi.org/10.1038/ncb2225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ozes B, Karagoz N, Schüle R, Rebelo A, Sobrido MJ, Harmuth F, Synofzik M, Pascual SIP, Colak M, Ciftci-Kavaklioglu B, Kara B, Ordóñez-Ugalde A, Quintáns B, Gonzalez MA, Soysal A, Zuchner S, Battaloglu E (2017) PLA2G6 mutations associated with a continuous clinical spectrum from neuroaxonal dystrophy to hereditary spastic paraplegia. Clin Genet 92(5):534–539. https://doi.org/10.1111/cge.13008

    Article  PubMed  CAS  Google Scholar 

  23. Chen YJ, Chen YC, Dong HL, Li LX, Ni W, Li HF, Wu ZY (2018) Novel PLA2G6 mutations and clinical heterogeneity in Chinese cases with phospholipase A2-associated neurodegeneration. Parkinsonism Relat Disord 49:88–94. https://doi.org/10.1016/j.parkreldis.2018.02.010

    Article  PubMed  Google Scholar 

  24. Kanadome T, Shibata H, Kuwata K, Takahara T, Maki M (2017) The calcium-binding protein ALG-2 promotes endoplasmic reticulum exit site localization and polymerization of Trk-fused gene (TFG) protein. FEBS J 284(1):56–76. https://doi.org/10.1111/febs.13949

    Article  PubMed  CAS  Google Scholar 

  25. Hanna MG, Block S, Frankel EB, Hou F, Johnson A, Yuan L, Knight G, Moresco JJ, Yates JR 3rd, Ashton R, Schekman R, Tong Y, Audhya A (2017) TFG facilitates outer coat disassembly on COPII transport carriers to promote tethering and fusion with ER-Golgi intermediate compartments. Proc Natl Acad Sci U S A 114(37):E7707–E7716. https://doi.org/10.1073/pnas.1709120114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and their family for their participation and contribution in this study. We also thank Dr. Giaccone for helping with the biopsy report and images.

Funding

This study received support from the Mariani Foundation of Milan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Tiranti.

Ethics declarations

The ethic board of the Scientific Institute Stella Maris (Pisa) approved the study and informed consent was obtained according to the Declaration of Helsinki from all the subjects involved.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary materials

Supplementary Figure 1

Follow-up brain MRI of subject II-3. ae Subject II-3. Axial (a, d) and coronal (b) FAST T2-weighted images show reduction of the supratentorial white matter, lateral ventricle enlargement, and large subarachnoid spaces as the effect of diffuse atrophy, middle cerebellar peduncle hypoplasia (star), and enlargement of the IV ventricle. Coronal image (c) shows possible hypoplasia of the optic chiasm (white arrow). e Sagittal image reveals thin corpus callosum (thin white arrow) and small brainstem. FAST imaging was required due to low patient compliance to the MRI exam. fl Subject 2 (healthy control, matched for age) for comparison. Normal axial, coronal, and sagittal FAST T2-weighted images. (PDF 834 kb)

Supplementary Figure 2

TFG expression and assembly in patient’s fibroblasts. a Patient and controls protein samples resolved in 10% SDS/PAGE gel after incubation with anti-TFG antibody. GAPDH was used as loading control. b Densitometric analysis of WB. c Blue native gels stained for TFG protein and CO1 (Cytochrome c oxidase subunit 1) used as loading control. d Densitometric analysis of BN. Numbers of kilodaltons are given on left of gels. WB, western blot; BN, blue native (PDF 156 kb)

Supplementary Figure 3

Sub-cellular distribution of TFG in patient’s fibroblasts. Control (a, b, c) and patient (d, e, f) fixed fibroblasts after double staining with Mitotracker red (ad), KDEL antibody (green in be), GM130 antibody (green in cf), and TFG-specific antibody (green in ad, red in b, c, e, f). To-Pro3 fluorescent dye (blue) was used for nuclear counterstaining. Original magnification of all images is × 63. Higher magnification views of the indicated regions (boxed) are also shown. The scale bars represent 30 μm (main) and 5 μm (inset). (PDF 934 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catania, A., Battini, R., Pippucci, T. et al. R106C TFG variant causes infantile neuroaxonal dystrophy “plus” syndrome. Neurogenetics 19, 179–187 (2018). https://doi.org/10.1007/s10048-018-0552-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-018-0552-x

Keywords

Navigation