Skip to main content
Log in

Molecular genetic and clinical characterization of myotonic dystrophy type 1 patients carrying variant repeats within DMPK expansions

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Myotonic dystrophy type 1 (DM1) is caused by a highly unstable expansion of CTG repeats in the DMPK gene. Its huge phenotypic variability cannot be explained solely by the repeat number. Recently, variant repeats within the DMPK expansions have emerged as potential disease modifiers. The frequency of variant expanded alleles was estimated in 242 DM1 patients from 174 Serbian families using repeat-primed PCR (RP-PCR). The patterns of variant repeats were determined by direct sequencing of RP-PCR or PCR products. PCR-based southern blot was performed to get insight into the intergenerational mutational dynamics of variant expanded alleles. All patients carrying variant repeats were clinically re-examined. Variant repeats were observed in eight patients from five families (2.9%). They were detected only at the 3′ end of DMPK expansions. CCG variant repeats were present in seven patients, either as a part of regular runs of CCGCTG hexamer, individual repeats, or CCG blocks. Analyses of three intergenerational transmissions revealed a considerable stability or likely a contraction of variant expanded alleles. Intriguingly, a decrease in age at onset accompanied these transmissions. Overall, patients were characterized by a milder phenotype and/or some atypical symptoms that could be rather clinically suggestive of myotonic dystrophy type 2. In addition, the first case of de novo CTC variant repeat was observed. Variant repeats might explain a part of the phenotypic variability in a small percent of DM1 patients and likely display a stabilizing effect on the meiotic instability of DMPK expanded alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harper P (2001) Myotonic dystrophy. WB Saunders, London

    Google Scholar 

  2. Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T, Sohn R, Zemelman B, Snell RG, Rundle SA, Crow S, Davies J, Shelbourne P, Buxton J, Jones C, Juvonen V, Johnson K, Harper PS, Shaw DJ, Housman DE (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68:799–808. https://doi.org/10.1016/0092-8674(92)90154-5

    Article  CAS  PubMed  Google Scholar 

  3. Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, Neville C, Narang M, Barceló J, O’Hoy K, Leblond S, Earle-Macdonald J, de Jong PJ, Wieringa B, Korneluk RG (1992) Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255:1253–1255. https://doi.org/10.1126/science.1546325

    Article  CAS  PubMed  Google Scholar 

  4. Fu YH, Pizzuti A, Fenwick RG Jr, King J, Rajnarayan S, Dunne PW, Dubel J, Nasser GA, Ashizawa T, de Jong P, Wieringa B, Korneluk R, Perryman MB, Epstein HF, Caskey CT (1992) An unstable triplet repeat in a generelated to myotonic muscular dystrophy. Science 255:1256–1258. https://doi.org/10.1126/science.1546326

    Article  CAS  PubMed  Google Scholar 

  5. Harley HG, Rundle SA, MacMillan JC, Myring J, Brook JD, Crow S, Reardon W, Fenton I, Shaw DJ, Harper PS (1993) Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am J Hum Genet 52:1164–1174

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Udd B, Krahe R (2012) The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol 11:891–905. https://doi.org/10.1016/S1474-4422(12)70204-1

    Article  CAS  PubMed  Google Scholar 

  7. Rakocevic-Stojanovic V, Peric S, Basta I, Dobricic V, Ralic V, Kacar A, Peric M, Novakovic I (2015) Variability of multisystemic features in myotonic dystrophy type1—lessons from Serbian registry. Neurol Res 37:939–944. https://doi.org/10.1179/1743132815Y.0000000068

    Article  PubMed  Google Scholar 

  8. Lavedan C, Hofmann-Radvanyi H, Shelbourne P, Rabes JP, Duros C, Savoy D, Dehaupas I, Luce S, Johnson K, Junien C (1993) Myotonic dystrophy: size- and sex-dependent dynamics of CTG meiotic instability, and somatic mosaicism. Am J Hum Genet 52:875–883

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rakocević-Stojanović V, Savić D, Pavlović S, Lavrnić D, Stević Z, Basta I, Romac S, Apostolski S (2005) Intergenerational changes of CTG repeat depending on the sex of the transmitting parent in myotonic dystrophy type 1. Eur J Neurol 12:236–237. https://doi.org/10.1111/j.1468-1331.2004.01075.x

    Article  PubMed  Google Scholar 

  10. Wong LJ, Ashizawa T, Monckton DG, Caskey CT, Richards CS (1995) Somatic heterogeneity of the CTG repeat in myotonic dystrophy is age and size dependent. Am J Hum Genet 56:114–122

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Morales F, Couto JM, Higham CF, Hogg G, Cuenca P, Braida C, Wilson RH, Adam B, del Valle G, Brian R, Sittenfeld M, Ashizawa T, Wilcox A, Wilcox DE, Monckton DG (2012) Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity. Hum Mol Genet 21:3558–3567. https://doi.org/10.1093/hmg/dds185

    Article  CAS  PubMed  Google Scholar 

  12. Hamshere MG, Harley H, Harper P, Brook JD, Brookfield JF (1999) Myotonic dystrophy: thecorrelation of (CTG) repeat length in leucocytes with age at onset is significant only for patients with small expansions. J Med Genet 36:59–61. https://doi.org/10.1136/jmg.36.1.59

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Marchini C, Lonigro R, Verriello L, Pellizzari L, Bergonzi P, Damante G (2000) Correlations between individual clinical manifestations and CTG repeat amplification in myotonic dystrophy. Clin Genet 57:74–82. https://doi.org/10.1034/j.1399-0004.2000.570112.x

    Article  CAS  PubMed  Google Scholar 

  14. Savić D, Rakocvic-Stojanovic V, Keckarevic D, Culjkovic B, Stojkovic O, Mladenovic J, Todorovic S, Apostolski S, Romac S (2002) 250 CTG repeats in DMPK is athreshold for correlation of expansion size and age at onset of juvenile-adult DM1. Hum Mutat 19:131–139. https://doi.org/10.1002/humu.10027

    Article  PubMed  Google Scholar 

  15. Salehi LB, Bonifazi E, Stasio ED, Gennarelli M, Botta A, Vallo L, Iraci R, Massa R, Antonini G, Angelini C, Novelli G (2007) Risk prediction for clinical phenotype in myotonic dystrophy type 1: data from 2,650 patients. Genet Test 11:84–90. https://doi.org/10.1089/gte.2006.0511

    Article  CAS  PubMed  Google Scholar 

  16. Lamar KM, McNally EM (2014) Genetic modifiers for neuromuscular diseases. J Neuromuscul Dis 1:3–13. https://doi.org/10.3233/JND-140023

    PubMed  PubMed Central  Google Scholar 

  17. Morales F, Vásquez M, Santamaría C, Cuenca P, Corrales E, Monckton DG (2016) A polymorphism in the MSH3 mismatch repair gene is associated with the levels of somatic instability of the expanded CTG repeat in the blood DNA of myotonic dystrophy type 1 patients. DNA Repair (Amst) 40:57–66. https://doi.org/10.1016/j.dnarep.2016.01.001

    Article  CAS  Google Scholar 

  18. Huin V, Vasseur F, Schraen-Maschke S, Dhaenens CM, Devos P, Dupont K, Sergeant N, Buée L, Lacour A, Hofmann-Radvanyi H, Sablonnière B (2013) MBNL1 gene variants asmodifiers of disease severity in myotonic dystrophy type 1. J Neurol 260:998–1003. https://doi.org/10.1007/s00415-012-6740-y

    Article  CAS  PubMed  Google Scholar 

  19. Musova Z, Mazanec R, Krepelova A, Ehler E, Vales J, Jaklova R, Prochazka T, Koukal P, Marikova T, Kraus J, Havlovicova M, Sedlacek Z (2009) Highly unstable sequence interruptions of the CTG repeat in the myotonic dystrophy gene. Am J Med Genet A149A:1365–1374. https://doi.org/10.1002/ajmg.a.32987

    Article  Google Scholar 

  20. Braida C, Stefanatos RK, Adam B, Mahajan N, Smeets HJ, Niel F, Goizet C, Arveiler B, Koenig M, Lagier-Tourenne C, Mandel JL, Faber CG, de Die-Smulders CE, Spaans F, Monckton DG (2010) Variant CCG and GGC repeats within the CTG expansion dramatically modify mutational dynamics and likely contribute toward unusual symptoms in some myotonic dystrophy type 1 patients. Hum Mol Genet 19:1399–1412. https://doi.org/10.1093/hmg/ddq015

    Article  CAS  PubMed  Google Scholar 

  21. Santoro M, Masciullo M, Pietrobono R, Conte G, Modoni A, Bianchi ML, Rizzo V, Pomponi MG, Tasca G, Neri G, Silvestri G (2013) Molecular, clinical, and muscle studies in myotonic dystrophy type 1 (DM1) associated with novel variant CCG expansions. J Neurol 260:1245–1257. https://doi.org/10.1007/s00415-012-6779-9

    Article  CAS  PubMed  Google Scholar 

  22. Botta A, Rossi G, Marcaurelio M, Fontana L, D’Apice MR, Brancati F, Massa R, Monckton DG, Sangiuolo F, Novelli G (2017) Identification and characterization of 5′ CCG interruptions in complex DMPK expanded alleles. Eur J Hum Genet 25:257–261. https://doi.org/10.1038/ejhg.2016.148

    Article  CAS  PubMed  Google Scholar 

  23. Radvansky J, Ficek A, Kadasi L (2011) Upgrading molecular diagnostics of myotonic dystrophies: multiplexing for simultaneous characterization of the DMPK and ZNF9 repeat motifs. Mol Cell Probes 25:182–185. https://doi.org/10.1016/j.mcp.2011.04.006

    Article  CAS  PubMed  Google Scholar 

  24. Mioshi E, Dawson K, Mitchell J, Arnold R, Hodges JR (2006) The Addenbrooke’s Cognitive Examination Revised (ACE-R): a brief cognitive test battery for dementia screening. Int J Geriatr Psychiatry 21:1078–1085. https://doi.org/10.1002/gps.1610

    Article  PubMed  Google Scholar 

  25. Radvansky J, Ficek A, Minarik G, Palffy R, Kadasi L (2011) Effect of unexpected sequence interruptions to conventional PCR and repeat primed PCR in myotonic dystrophy type 1 testing. Diagn Mol Pathol 20:48–51. https://doi.org/10.1097/PDM.0b013e3181efe290

    Article  PubMed  Google Scholar 

  26. Monckton DG, Wong LJ, Ashizawa T, Caskey CT (1995) Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum Mol Genet 4:1–8

    Article  CAS  PubMed  Google Scholar 

  27. Saluto A, Brussino A, Tassone F, Arduino C, Cagnoli C, Pappi P, Hagerman P, Migone N, Brusco A (2005) An enhanced polymerase chain reaction assay to detect pre-and full mutation alleles of the fragile X mental retardation 1 gene. J Mol Diagn 7:605–612. https://doi.org/10.1016/S1525-1578(10)60594-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL https://www.R-project.org/

    Google Scholar 

  29. Pearson CE, Edamura KN, Cleary JD (2005) Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 6:729–742. https://doi.org/10.1038/nrg1689

    Article  CAS  PubMed  Google Scholar 

  30. Ashizawa T, Anvret M, Baiget M, Barceló JM, Brunner H, Cobo AM, Dallapiccola B, Fenwick RG Jr, Grandell U, Harley H et al (1994) Characteristics of intergenerational contractions of the CTG repeat in myotonic dystrophy. Am J Hum Genet 54:414–423

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Brunner HG, Jansen G, Nillesen W, Nelen MR, de Die CE, Höweler CJ, van Oost BA, Wieringa B, Ropers HH, Smeets HJ (1993) Brief report: reverse mutation in myotonic dystrophy. N Engl J Med 328:476–480. https://doi.org/10.1056/NEJM199302183280705

    Article  CAS  PubMed  Google Scholar 

  32. Matsuura T, Fang P, Pearson CE, Jayakar P, Ashizawa T, Roa BB, Nelson DL (2006) Interruptions in the expanded ATTCT repeat of spinocerebellar ataxia type 10: repeat purity as a disease modifier? Am J Hum Genet 78:125–129. https://doi.org/10.1086/498654

    Article  CAS  PubMed  Google Scholar 

  33. Gao R, Matsuura T, Coolbaugh M, Zühlke C, Nakamura K, Rasmussen A, Siciliano MJ, Ashizawa T, Lin X (2008) Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17. Eur J Hum Genet 16:215–222. https://doi.org/10.1038/sj.ejhg.5201954

    Article  CAS  PubMed  Google Scholar 

  34. McFarland KN, Liu J, Landrian I, Gao R, Sarkar PS, Raskin S, Moscovich M, Gatto EM, Teive HA, Ochoa A, Rasmussen A, Ashizawa T (2013) Paradoxical effects of repeat interruptions on spinocerebellar ataxia type 10 expansions and repeat instability. Eur J Hum Genet 21:1272–1276. https://doi.org/10.1038/ejhg.2013.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller TM (2008) Differential diagnosis of myotonic disorders. Muscle Nerve 37:293–299. Review. https://doi.org/10.1002/mus.20923

    Article  PubMed  Google Scholar 

  36. Peric S, Mandic-Stojmenovic G, Stefanova E, Savic-Pavicevic D, Pesovic J, Ilic V, Dobricic V, Basta I, Lavrnic D, Rakocevic-Stojanovic V (2015) Frontostriatal dysexecutive syndrome: a core cognitive feature of myotonic dystrophy type 2. J Neurol 262:142–148. https://doi.org/10.1007/s00415-014-7545-y

    Article  PubMed  Google Scholar 

Download references

Funding information

This study was supported by the Ministry of Education, Science and Technological Development, Republic of Serbia (grant nos. 173016 and 175083).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jovan Pešović or Dušanka Savić-Pavićević.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all participants included in the study.

Research involving human participants

The study was approved by the Ethical Committee of the University of Belgrade, School of Medicine. It was performed in accordance with the ethical standards of the 1964 Declaration of Helsinki and its later amendments.

Electronic supplementary material

ESM 1

(PDF 288 kb)

ESM 2

(PDF 201 kb)

ESM 3

(PDF 599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pešović, J., Perić, S., Brkušanin, M. et al. Molecular genetic and clinical characterization of myotonic dystrophy type 1 patients carrying variant repeats within DMPK expansions. Neurogenetics 18, 207–218 (2017). https://doi.org/10.1007/s10048-017-0523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-017-0523-7

Keywords

Navigation