Skip to main content

Advertisement

Log in

Mosaicism in ATP1A3-related disorders: not just a theoretical risk

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Mutations in ATP1A3 are involved in a large spectrum of neurological disorders, including rapid onset dystonia parkinsonism (RDP), alternating hemiplegia of childhood (AHC), and cerebellar ataxia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS), with recent descriptions of overlapping phenotypes. In AHC, a few familial cases of autosomal dominant inheritance have been reported, along with cases of de novo sporadic mutations. In contrast, autosomal dominant inheritance has frequently been associated with RDP and CAPOS. Here, we report on two unrelated sets of full siblings with ATP1A3 mutations, (c.2116G>A) p. Gly706Arg in the first family, and (c.2266C>T) p. Arg756Cys in the second family, presenting with familial recurrence of the disease. Both families displayed parental germline mosaicism. In the first family, the brother and sister presented with severe intellectual deficiency, early onset pharmacoresistant epilepsy, ataxia, and autistic features. In the second family, both sisters demonstrated severe encephalopathy with ataxia and dystonia following a regression episode during a febrile episode during infancy. To our knowledge, mosaicism has not previously been reported in ATP1A3-related disorders. This report, therefore, provides evidence that germline mosaicism for ATP1A3 mutations is a likely explanation for familial recurrence and should be considered during recurrence risk counseling for families of children with ATP1A3-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Toustrup-Jensen MS, Einholm AP, Schack VR, Nielsen HN, Holm R, Sobrido M-J et al (2014) Relationship between intracellular Na+ concentration and reduced Na+ affinity in Na+/K+−ATPase mutants causing neurological disease. J Biol Chem 289(6):3186–3197. doi:10.1074/jbc.M113.543272

    Article  CAS  PubMed  Google Scholar 

  2. de Carvalho Aguiar P, Sweadner KJ, Penniston JT, Zaremba J, Liu L, Caton M et al (2004) Mutations in the Na/K-ATPase α3 Gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron 43(2):169–175. doi:10.1016/j.neuron.2004.06.028

    Article  PubMed  Google Scholar 

  3. Heinzen EL, Swoboda KJ, Hitomi Y, Gurrieri F, Nicole S, de Vries B et al (2012) De novo mutations in ATP1A3 cause alternating hemiplegia of childhood. Nat Genet 44(9):1030–1034. doi:10.1038/ng.2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rosewich H, Thiele H, Ohlenbusch A, Maschke U, Altmüller J, Frommolt P et al (2012) Heterozygous de-novo mutations in ATP1A3 in patients with alternating hemiplegia of childhood: a whole-exome sequencing gene-identification study. Lancet Neurol 11(9):764–773. doi:10.1016/S1474-4422(12)70182-5

    Article  CAS  PubMed  Google Scholar 

  5. Ishii A, Saito Y, Mitsui J, Ishiura H, Yoshimura J, Arai H et al (2013) Identification of ATP1A3 mutations by exome sequencing as the cause of alternating hemiplegia of childhood in Japanese patients. PLoS One 8(2):e56120. doi:10.1371/journal.pone.0056120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Demos MK, van Karnebeek CD, Ross CJ, Adam S, Shen Y, Zhan SH et al (2014) A novel recurrent mutation in ATP1A3 causes CAPOS syndrome. Orphanet J Rare Dis 9(1):15. doi:10.1186/1750-1172-9-15

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rosewich H, Weise D, Ohlenbusch A, Gärtner J, Brockmann K (2014c) Phenotypic overlap of alternating hemiplegia of childhood and CAPOS syndrome. Neurology 83(9):861–863. doi:10.1212/WNL.0000000000000735

    Article  PubMed  Google Scholar 

  8. Potic A, Nmezi B, Padiath QS (2015) CAPOS syndrome and hemiplegic migraine in a novel pedigree with the specific ATP1A3 mutation. J Neurol Sci 358(1–2):453–456. doi:10.1016/j.jns.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  9. Paciorkowski AR, McDaniel SS, Jansen LA, Tully H, Tuttle E, Ghoneim DH et al (2015) Novel mutations in ATP1A3 associated with catastrophic early life epilepsy, episodic prolonged apnea, and postnatal microcephaly. Epilepsia 56(3):422–430. doi:10.1111/epi.12914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brashear A, Mink JW, Hill DF, Boggs N, Mccall WV, Stacy MA et al (2012b) ATP1A3 mutations in infants: a new rapid-onset dystonia-parkinsonism phenotype characterized by motor delay and ataxia: case report. Dev Med Child Neurol 54(11):1065–1067. doi:10.1111/j.1469-8749.2012.04421.x

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brashear A, Cook JF, Hill DF, Amponsah A, Snively BM, Light L et al (2012a) Psychiatric disorders in rapid-onset dystonia-parkinsonism. Neurology 79(11):1168–1173. doi:10.1212/WNL.0b013e3182698d6c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cook JF, Hill DF, Snively BM, Boggs N, Suerken CK, Haq I et al (2014) Cognitive impairment in rapid-onset dystonia-parkinsonism. Mov Disord 29(3):344–350. doi:10.1002/mds.25790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosewich H, Ohlenbusch A, Huppke P, Schlotawa L, Baethmann M, Carrilho I et al (2014a) The expanding clinical and genetic spectrum of ATP1A3-related disorders. Neurology 82(11):945–955. doi:10.1212/WNL.0000000000000212

    Article  CAS  PubMed  Google Scholar 

  14. Roubergue A, Roze E, Vuillaumier-Barrot S, Fontenille M-J, Méneret A, Vidailhet M et al (2013) The multiple faces of the ATP1A3-related dystonic movement disorder. Mov Disord 28(10):1457–1459. doi:10.1002/mds.25396

    Article  CAS  PubMed  Google Scholar 

  15. Sweney MT, Newcomb TM, Swoboda KJ (2015) The expanding spectrum of neurological phenotypes in children with ATP1A3 mutations, alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism, CAPOS and beyond. Pediatr Neurol 52(1):56–64. doi:10.1016/j.pediatrneurol.2014.09.015

    Article  PubMed  Google Scholar 

  16. Dard R, Mignot C, Durr A, Lesca G, Sanlaville D, Roze E et al (2015) Relapsing encephalopathy with cerebellar ataxia related to an ATP1A3 mutation. Dev Med Child Neurol 57(12):1183–1186. doi:10.1111/dmcn.12927

    Article  PubMed  Google Scholar 

  17. Termsarasab P, Yang AC, Frucht SJ (2015) Intermediate phenotypes of ATP1A3 mutations: phenotype–genotype correlations. Tremor Hyperkinetic Mov 5:336. doi:10.7916/D8MG7NS8

    Google Scholar 

  18. Bourgeois M, Aicardi J, Goutieres F (1993) Alternating hemiplegia of childhood. J Pediatr 122(5):675–679

    Article  Google Scholar 

  19. Sweney MT, Silver K, Gerard-Blanluet M, Pedespan J-M, Renault F, Arzimanoglou A et al (2009) Alternating hemiplegia of childhood: early characteristics and evolution of a neuro developmental syndrome. Pediatrics 123(3):e534–e541. doi:10.1542/peds.2008-2027

    Article  PubMed  Google Scholar 

  20. Panagiotakaki E, De Grandis E, Stagnaro M, Heinzen E, Fons C, Sisodiya S et al (2015) Clinical profile of patients with ATP1A3 mutations in alternating hemiplegia of childhood—a study of 155 patients. Orphanet J Rare Dis 10(1). doi:10.1186/s13023-015-0335-5

  21. Brashear A, Dobyns WB, de Carvalho Aguiar P, Borg M, Frijns CJM, Gollamudi S et al (2007) The phenotypic spectrum of rapid-onset dystonia-parkinsonism (RDP) and mutations in the ATP1A3 gene. Brain 130(3):828–835. doi:10.1093/brain/awl340

    Article  PubMed  Google Scholar 

  22. Dobyns WB, Ozelius LJ, Kramer PL, Brashear PL, Farlow MR, Perry TR et al (1993) Rapid-onset-dystonia-parkinsonism. Neurology 43(12):2596–2602

    Article  CAS  PubMed  Google Scholar 

  23. Rosewich H, Baethmann M, Ohlenbusch A, Gärtner J, Brockmann K (2014b) A novel ATP1A3 mutation with unique clinical presentation. J Neurol Sci 341(1–2):133–135. doi:10.1016/j.jns.2014.03.034

    Article  CAS  PubMed  Google Scholar 

  24. Sasaki M, Ishii A, Saito Y, Morisada N, Iijima K, Takada S et al (2014) Genotype–phenotype correlations in alternating hemiplegia of childhood. Neurology 82(6):482–490. doi:10.1212/WNL.0000000000000102

    Article  CAS  PubMed  Google Scholar 

  25. Viollet L, Glusman G, Murphy KJ, Newcomb TM, Reyna SP, Sweney M et al (2015) Alternating hemiplegia of childhood: retrospective genetic study and genotype-phenotype correlations in 187 subjects from the US AHCF registry. PLoS One 10(5):e0127045. doi:10.1371/journal.pone.0127045

    Article  PubMed  PubMed Central  Google Scholar 

  26. Heinzen EL, Arzimanoglou A, Brashear A, Clapcote SJ, Gurrieri F, Goldstein DB et al (2014) Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol 13(5):503–514. doi:10.1016/S1474-4422(14)70011-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brashear A, DeLeon D, Bressman SB, Thyagarajan D, Farlow MR, Dobyns WB (1997) Rapid-onset dystonia-parkinsonism in a second family. Neurology 48(4):1066–1069

    Article  CAS  PubMed  Google Scholar 

  28. Zaremba J, Mierzewska H, Lysiak Z, Kramer P, Ozelius LJ, Brashear A (2004) Rapid-onset dystonia-parkinsonism: a fourth family consistent with linkage to chromosome 19q13. Mov Disord 19(12):1506–1510. doi:10.1002/mds.20258

    Article  PubMed  Google Scholar 

  29. Yang X, Gao H, Zhang J, Xu X, Liu X, Wu X et al (2014) ATP1A3 mutations and genotype-phenotype correlation of alternating hemiplegia of childhood in Chinese patients. PLoS One 9(5):e97274. doi:10.1371/journal.pone.0097274

    Article  PubMed  PubMed Central  Google Scholar 

  30. Youssoufian H, Pyeritz RE (2002) Mechanisms and consequences of somatic mosaicism in humans. Nat Rev Genet 3(10):748–758. doi:10.1038/nrg906

    Article  CAS  PubMed  Google Scholar 

  31. Emery AE (1986) Risk estimation in autosomal dominant disorders with reduced penetrance. J Med Genet 23(4):316–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hall JG (1988) Review and hypotheses: somatic mosaicism: observations related to clinical genetics. Am J Hum Genet 43(4):355

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Campbell IM, Stewart JR, James RA, Lupski JR, Stankiewicz P, Olofsson P et al (2014) Parent of origin, mosaicism, and recurrence risk: probabilistic modeling explains the broken symmetry of transmission genetics. Am J Hum Genet 95(4):345–359. doi:10.1016/j.ajhg.2014.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hartl DL (1971) Recurrence risks for germinal mosaics. Am J Hum Genet 23(2):124

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Van der Meulen MA, Van der Meulen MJ, te Meerman GJ (1995) Recurrence risk for germinal mosaics revisited. J Med Genet 32(2):102–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hoei-Hansen CE, Dali CÍ, Lyngbye TJB, Duno M, Uldall P (2014) Alternating hemiplegia of childhood in Denmark: clinical manifestations and ATP1A3 mutation status. Eur J Paediatr Neurol 18(1):50–54. doi:10.1016/j.ejpn.2013.08.007

    Article  PubMed  Google Scholar 

  37. Panagiotakaki E, Gobbi G, Neville B, Ebinger F, Campistol J, Nevsimalova S et al (2010) Evidence of a non-progressive course of alternating hemiplegia of childhood: study of a large cohort of children and adults. Brain 133(12):3598–3610. doi:10.1093/brain/awq295

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the patients and their families, as well as their referring physicians (especially, DrS. Peudenier) without whom this study would not have been possible. We thank members of the pediatric neurology and medical genetics departments of Necker Enfants Malades for their thoughtful comments.

MH was responsible for conceptualization and design of the study, collected the data, analyzed and interpretated them, drafted, and revised the manuscript for intellectual content. MH had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

JR was responsible for conceptualization and design of the study, collected the data, drafted, and revised portions of the manuscript for intellectual content.

LH performed the molecular analysis and analyzed and interpreted the molecular data. LH drafted and revised portions of the manuscript for intellectual content.

NB collected all the radiological data, drafted, and revised portions of the manuscript for intellectual content.

MB performed the molecular analysis from buccal and urine samples of both parents and revised portions of the manuscript for intellectual content.

MR, ID, VCD, AM, and PdL collected the clinical data and revised portions of the manuscript for intellectual content.

LR revised the manuscript for English language.

NBB was responsible for the design and conceptualization of the study, drafted and revised portions of the manuscript for intellectual content.

CB was responsible for the design and conceptualization of the study, drafted and revised portions of the manuscript for intellectual content.

This work was partially funded by a grant to CB from the Fondation des Maladies Rares.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Bahi-Buisson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Claude Besmond and Nadia Bahi-Buisson contributed equally to this work.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hully, M., Ropars, J., Hubert, L. et al. Mosaicism in ATP1A3-related disorders: not just a theoretical risk. Neurogenetics 18, 23–28 (2017). https://doi.org/10.1007/s10048-016-0498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-016-0498-9

Keywords

Navigation