Skip to main content
Log in

Circular RNAs—one of the enigmas of the brain

  • Review Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) provide a new and relatively unexplored class of noncoding RNAs that are predominantly found in mammalian cells. In this review, we present the latest data regarding the structural organization, possible mechanisms of synthesis, and functions of circRNAs. These transcripts were isolated as an RNA fraction that was resistant to RNase R treatment, which selectively destroys the linear forms of RNA molecules. circRNAs are encoded by orthologous genes in different organisms and show tissue- and organ-specific expression. Currently, the biogenesis and functional properties of circRNAs remain unclear; transcripts of this class, however, remain highly promising targets of research. Some of them have been ascribed the function of “molecular sponges” that can absorb microRNAs, RNA-binding proteins, and small nuclear RNAs. circRNAs are often formed from the RNA portions of protein-coding genes in the course of alternative splicing. Some features of the circRNAs of mammals were demonstrated using 11 circRNAs of the human sphingomyelin synthase 1 gene (SGMS1), which were discovered by us in the brain. These circRNAs consist mainly of portions of the multi-exon 5′ untranslated region (5′UTR) of the SGMS1 gene and include one to five exons. The synthesis of circRNAs may be new, previously unknown, function of the multi-exon 5′UTR of genes. This feature is most clearly manifested in the brain, where the level of circRNAs is significantly higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777. doi:10.1371/journal.pgen.1003777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733. doi:10.1371/journal.pone.0030733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–57. doi:10.1261/rna.035667.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–8. doi:10.1038/nature11928

    Article  CAS  PubMed  Google Scholar 

  5. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) CircRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66. doi:10.1016/j.molcel.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  6. Guo JU, Agarwal V, Guo H, Bartel DP (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409. doi:10.1186/s13059-014-0409-z

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–47. doi:10.1016/j.cell.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  8. Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Öhman M, Refojo D, Kadener S, Rajewsky N (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–85. doi:10.1016/j.molcel.2015.03.027

    Article  CAS  PubMed  Google Scholar 

  9. Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34(8):e63

    Article  PubMed  PubMed Central  Google Scholar 

  10. Suzuki H, Tsukahara T (2014) A view of pre-RNA splicing from RNase R resistant RNAs. Int J Mol Sci 15(6):9331–42. doi:10.3390/ijms15069331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806. doi:10.1016/j.molcel.2013.08.017

    Article  CAS  PubMed  Google Scholar 

  12. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–64. doi:10.1038/nsmb.2959

    Article  CAS  PubMed  Google Scholar 

  13. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20(12):1829–42. doi:10.1261/rna.047126.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zaphiropoulos PG (1996) Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc Natl Acad Sci U S A 93(13):6536–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zaphiropoulos PG (1997) Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis. Mol Cell Biol 17(6):2985–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH, Bindereif A (2015) Exon circularization requires canonical splice signals. Cell Rep 10(1):103–11. doi:10.1016/j.celrep.2014

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Wang Z (2015) Efficient backsplicing produces translatable circular mRNAs. RNA 21(2):172–9. doi:10.1261/rna.048272.114

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, Yang L, Chen LL (2016) The biogenesis of nascent circular RNAs. Cell Rep 15(3):611–24. doi:10.1016/j.celrep.2016.03.058

    Article  CAS  PubMed  Google Scholar 

  19. Shepard S, McCreary M, Fedorov A (2009) The peculiarities of large intron splicing in animals. PLoS One 4(11):e7853. doi:10.1371/journal.pone.0007853

    Article  PubMed  PubMed Central  Google Scholar 

  20. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–30

    Article  CAS  PubMed  Google Scholar 

  21. Cao QP, Gaudette MF, Robinson DH, Crain WR (1995) Expression of the mouse testis-determining gene Sry in male preimplantation embryos. Mol Reprod Dev 40(2):196–204

    Article  CAS  PubMed  Google Scholar 

  22. Wilusz JE, Sharp PA (2013) Molecular biology. A circuitous route to noncoding RNA. Science 340(6131):440–1. doi:10.1126/science.1238522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–61. doi:10.1038/nbt.2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28(20):2233–47. doi:10.1101/gad.251926.114

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wilusz JE (2015) Repetitive elements regulate circular RNA biogenesis. Mob Genet Elements 5(3):1–7

    Article  PubMed  Google Scholar 

  26. Filippenkov IB, Sudarkina OY, Limborska SA, Dergunova LV (2015) Circular RNA of the human sphingomyelin synthase 1 gene: multiple splice variants, evolutionary conservatism and expression in different tissues. RNA Biol 12(9):1030–42. doi:10.1080/15476286.2015.1076611

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vladychenskaya IP, Dergunova LV, Dmitrieva VG, Limborska SA (2004) Human gene MOB: structure specification and aspects of transcriptional activity. Gene 338(2):257–65

    Article  CAS  PubMed  Google Scholar 

  28. Rozhkova AV, Dmitrieva VG, Zhapparova ON, Sudarkina OY, Nadezhdina ES, Limborska SA, Dergunova LV (2011) Human sphingomyelin synthase 1 gene (SMS1): organization, multiple mRNA splice variants and expression in adult tissues. Gene 481(2):65–75. doi:10.1016/j.gene.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  29. Rozhkova AV, Filippenkov IB, Sudarkina OY, Limborska SA, Dergunova LV (2015) Alternative promoters located in SGMS1 gene introns participate in regulation of its expression in human tissues. Mol Biol (Mosk) 49(2):325–33

    Article  CAS  Google Scholar 

  30. Pasman Z, Been MD, Garcia-Blanco MA (1996) Exon circularization in mammalian nuclear extracts. RNA 2(6):603–10

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kameyama T, Suzuki H, Mayeda A (2012) Re-splicing of mature mRNA in cancer cells promotes activation of distant weak alternative splice sites. Nucleic Acids Res 40(16):7896–906. doi:10.1093/nar/gks520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160(6):1125–34. doi:10.1016/j.cell.2015.02.014

    Article  CAS  PubMed  Google Scholar 

  33. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–8. doi:10.1038/nature11993

    Article  CAS  PubMed  Google Scholar 

  34. You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X, Hou J, Liu H, Sun W, Sambandan S, Chen T, Schuman EM, Chen W (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–10. doi:10.1038/nn.3975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31. doi:10.3389/neuro.09.031.2009

    Article  PubMed  PubMed Central  Google Scholar 

  36. Daniel C, Silberberg G, Behm M, Öhman M (2014) Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome Biol 15(2):R28. doi:10.1186/gb-2014-15-2-r28

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, Karreth F, Poliseno L, Provero P, Di Cunto F, Lieberman J, Rigoutsos I, Pandolfi PP (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147(2):344–57. doi:10.1016/j.cell.2011.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Broderick JA, Zamore PD (2014) Competitive endogenous RNAs cannot alter microRNA function in vivo. Mol Cell 54(5):711–3. doi:10.1016/j.molcel.2014.05.023

    Article  CAS  PubMed  Google Scholar 

  39. Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 54(5):766–76. doi:10.1016/j.molcel.2014.03.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, Kjems J (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30(21):4414–22. doi:10.1038/emboj.2011.359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in Cancer. Cancer Res 73(18):5609–12. doi:10.1158/0008-5472.CAN-13-1568

    Article  CAS  PubMed  Google Scholar 

  42. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S, Purow B (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68(10):3566–72. doi:10.1158/0008-5472

    Article  CAS  PubMed  Google Scholar 

  43. Jiang L, Liu X, Chen Z, Jin Y, Heidbreder CE, Kolokythas A, Wang A, Dai Y, Zhou X (2010) microRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem J 432(1):199–205. doi:10.1042/BJ20100859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alphasynuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 106(31):13052–7. doi:10.1073/pnas.0906277106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang C, Shan G (2015) What happens at or after transcription: insights into circRNA biogenesis and function. Transcription 6(4):61–4. doi:10.1080/21541264.2015.1071301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Veno MT, Hansen TB, Veno ST, Clausen BH, Grebing M, Finsen B, Holm IE, Kjems J (2015) Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol 16:245. doi:10.1186/s13059-015-0801-3

    Article  PubMed  PubMed Central  Google Scholar 

  47. Somers J, Pöyry T, Willis AE (2013) A perspective on mammalian upstream open reading frame function. Int J Biochem Cell Biol 45(8):1690–700. doi:10.1016/j.biocel.2013.04.020

    Article  CAS  PubMed  Google Scholar 

  48. Sudarkina OY, Filippenkov IB, Brodsky IB, Limborska SA, Dergunova LV (2015) Comparative analysis of sphingomyelin synthase 1 gene expression at the transcriptional and translational levels in human tissues. Mol Cell Biochem 406(1-2):91–9. doi:10.1007/s11010-015-2427-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Russian Foundation for Basic Research for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan B. Filippenkov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Funding

This work was supported by a grant from the Molecular and Cellular Biology Program of the Russian Academy of Sciences and by grant from the Russian Foundation for Basic Research (grant number 16-04-00488; grant number 16-34-00653).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippenkov, I.B., Kalinichenko, E.O., Limborska, S.A. et al. Circular RNAs—one of the enigmas of the brain. Neurogenetics 18, 1–6 (2017). https://doi.org/10.1007/s10048-016-0490-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-016-0490-4

Keywords

Navigation