Skip to main content
Log in

A novel Venus’ visible image processing neoteric workflow for improved planetary surface feature analysis

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

The article presents a novel methodology that comprises of end-to-end Venus’ visible image processing neoteric workflow. The visible raw image is denoised using Tri-State median filter with background dark subtraction, and then enhanced using Contrast Limited Adaptive Histogram Equalization. The multi-modal image registration technique is developed using Segmented Affine Scale Invariant Feature Transform and Motion Smoothness Constraint outlier removal for co-registration of Venus’ visible and radar image. A novel image fusion algorithm using guided filter is developed to merge multi-modal Visible-Radar Venus’ image pair for generating the fused image. The Venus’ visible image quality assessment is performed at each processing step, and results are quantified and visualized. In addition, fuzzy color-coded segmentation map is generated for crucial information retrieval about Venus’ surface feature characteristics. It is found that Venus’ fused image clearly demarked planetary morphological features and validated with publicly available Venus’ radar nomenclature map.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Saunders RS, Spear AJ, Allin PC, Austin RS, Berman AL, Chandlee RC, Clark J et al (1992) Magellan mission summary. J Geophys Res: Planets 97(E8):13067–13090

    Article  Google Scholar 

  2. Svedhem H, Titov DV, McCoy D, Lebreton J-P, Barabash S, Bertaux J-L, Drossart P et al (2007) Venus express—the first European mission to Venus. Planet Space Sci 55(12):1636–1652

    Article  ADS  Google Scholar 

  3. Wood BE, Hess P, Lustig-Yaeger J, Gallagher B, Korwan D, Rich N, Stenborg G et al (2022) Parker solar probe imaging of the night side of Venus. Geophys Res Lett 49(3):e2021GL096302

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. Pettengill GH, Ford PG, Johnson WTK, Keith Raney R, Soderblom LA (1991) Magellan: Radar performance and data products. Science 252(5003):260–265

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Chen T, Ma K-K, Chen L-H (1999) Tri-state median filter for image denoising. IEEE Trans Image Process 8(12):1834–1838

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Reza AM (2004) Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J VLSI Signal Process Syst Signal Image Video Technol 38(1):35–44

    Article  Google Scholar 

  7. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60(2):91–110

    Article  Google Scholar 

  8. Bian, JiaWang, Wen-Yan Lin, Yasuyuki Matsushita, Sai-Kit Yeung, Tan-Dat Nguyen, and Ming-Ming Cheng. "Gms: Grid-based motion statistics for fast, ultra-robust feature correspondence." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4181–4190. 2017.

  9. He K, Sun J, Tang X (2012) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 35(6):1397–1409

    Article  Google Scholar 

  10. Atkinson PM, Sargent IM, Foody GM, Williams J (2005) Interpreting image based methods for estimating the signal to noise ratio. Int J Sens 26(22):5099–5115

    Article  Google Scholar 

  11. Rubel A, Ieremeiev O, Lukin V, Fastowicz J, Okarma K (2022) Combined no-reference image quality metrics for visual quality assessment optimized for remote sensing images. Appl Sci 12(4):1986

    Article  CAS  Google Scholar 

  12. Thanh DNH, Engínoğlu S (2019) An iterative mean filter for image denoising. IEEE Access 7:167847–167859

    Article  Google Scholar 

  13. Young IT, Van Vliet LJ (1995) Recursive implementation of the Gaussian filter. Signal Process 44(2):139–151

    Article  Google Scholar 

  14. Eng H-L, Ma K-K (2001) Noise adaptive soft-switching median filter. IEEE Trans Image Process 10(2):242–251

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Buades, Antoni, Bartomeu Coll, and J-M. Morel. "A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 2, pp. 60–65. Ieee, 2005.

  16. Tomasi, Carlo and Roberto Manduchi. Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), pp. 839–846. IEEE, 1998.

  17. Caraffa L, Tarel J-P, Charbonnier P (2015) The guided bilateral filter: When the joint/cross bilateral filter becomes robust. IEEE Trans Image Process 24(4):1199–1208

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  18. Blount G, Greeley R (1987) Correlated noise as a planetary image enhancement technique. Bull Am Astron Soc 19:847

    ADS  Google Scholar 

  19. Singh G, Mittal A (2014) Various image enhancement techniques-a critical review. Int J Innov Sci Res 10(2):267–274

    Google Scholar 

  20. Zitova B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21(11):977–1000

    Article  Google Scholar 

  21. Sharma A, MD Ansari, and Rajiv Kumar. A comparative study of edge detectors in digital image processing. In: 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC), pp. 246–250. IEEE, 2017.

  22. Ansari, MD, Mishra AR, Ansari FT, and M Chawla (2016). "On edge detection based on new intuitionistic fuzzy divergence and entropy measures." In: 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), pp. 689–693. IEEE

  23. Ansari MD, Mishra AR, Ansari FT (2018) New divergence and entropy measures for intuitionistic fuzzy sets on edge detection. Int J Fuzzy Syst 20:474–487

    Article  MathSciNet  Google Scholar 

  24. Lu Y, Khan M, Ansari MD (2022) Face recognition algorithm based on stack denoising and self-encoding lbp. J Intell Syst 31(1):501–510

    Google Scholar 

  25. Ansari MD, Ghrera SP (2018) Intuitionistic fuzzy local binary pattern for features extraction. Int J Inf Commun Technol 13(1):83–985

    Google Scholar 

  26. Harris C, Stephens M (1988) A combined corner and edge detector. Alvey Vis Conf 15(50):10–5244

    Google Scholar 

  27. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110

    Article  Google Scholar 

  28. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  29. Rublee E, Rabaud V, Konolige K, and Bradski G (2011). ORB: An efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE

  30. Alcantarilla PF, Bartoli A, and Davison AJ (2012). "KAZE features." In Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7–13, 2012, Proceedings, Part VI 12, pp. 214–227. Springer Berlin Heidelberg

  31. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

  32. Torr PHS, Zisserman A (2000) MLESAC: a new robust estimator with application to estimating image geometry. Comput Vis Image Underst 78(1):138–156

    Article  Google Scholar 

  33. Misra I, Rohil MK, Moorthi SM, Dhar D (2022) A novel country-level integrated image mosaic system using optical remote sensing imagery. Earth Sci Inform 15(4):2181–2193

    Article  ADS  Google Scholar 

  34. Ghassemian H (2016) A review of remote sensing image fusion methods. Inf Fus 32:75–89

    Article  Google Scholar 

  35. Misra, Indranil, Rajdeep Kaur Gambhir, S. Manthira Moorthi, Debajyoti Dhar, and R. Ramakrishnan. "An efficient algorithm for automatic fusion of RISAT-1 SAR data and Resourcesat-2 optical images." In 2012 4th International Conference on Intelligent Human Computer Interaction (IHCI), pp. 1–6. IEEE, 2012.

  36. Chu H, Zhu W (2008) Fusion of IKONOS satellite imagery using IHS transform and local variation. IEEE Geosci Remote Sens Lett 5(4):653–657

    Article  ADS  Google Scholar 

  37. Kumar, S. Senthil and S. Muttan. "PCA-based image fusion." In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII, vol. 6233, pp. 658–665. SPIE, 2006.

  38. Mangalraj P, Sivakumar V, Karthick S, Haribaabu V, Ramraj S, Samuel DJ (2020) A review of multi-resolution analysis (MRA) and multi-geometric analysis (MGA) tools used in the fusion of remote sensing images. Circuits Syst Signal Process 39:3145–3172t

    Article  Google Scholar 

  39. Zhang H, Shen H, Yuan Q, Guan X (2022) Multispectral and SAR image fusion based on laplacian pyramid and sparse representation. Remote Sens 14(4):870

    Article  ADS  Google Scholar 

  40. Liu JG (2010) Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details. Int J Remote Sens 21:3461–4347

    Article  Google Scholar 

  41. Chen Y, Bruzzone L (2021) Self-supervised sar-optical data fusion of sentinel-1/-2 images. IEEE Trans Geosci Remote Sens 60:1–11

    Article  Google Scholar 

  42. Misra I, Rohil MK, Moorthi SM, Dhar D (2023) SPRINT: spectra preserving radiance image fusion technique using holistic deep edge spatial attention and minnaert guided bayesian probabilistic model. Signal Process: Image Commun 113:116920

    Google Scholar 

  43. Plebani E, Ehlmann BL, Leask EK, Fox VK, Dundar MM (2022) A machine learning toolkit for CRISM image analysis. Icarus 376:114849

    Article  CAS  Google Scholar 

  44. Yuan J, He J (2021) Blocking sparse method for image denoising. Pattern Anal Appl 24(3):1125–1133

    Article  Google Scholar 

  45. Ramachandran V, Kishorebabu V (2019) A tri-state filter for the removal of salt and pepper noise in mammogram images. J Med Syst 43(2):1–10

    Article  Google Scholar 

  46. George G, Oommen RM, Shelly S, Philipose SS, and Varghese AM (2018). A survey on various median filtering techniques for removal of impulse noise from digital image." In 2018 Conference on Emerging Devices and Smart Systems (ICEDSS), pp. 235–238. IEEE

  47. Samarasinha NH, Larson SM (2014) Image enhancement techniques for quantitative investigations of morphological features in cometary comae: a comparative study. Icarus 239:168–185

    Article  ADS  Google Scholar 

  48. Hao S, Han Xu, Zhang Y, Lei Xu (2021) Low-light enhancement based on an improved simplified Retinex model via fast illumination map refinement. Pattern Anal Appl 24(1):321–332

    Article  Google Scholar 

  49. Chang Y, Jung C, Ke P, Song H, Hwang J (2018) Automatic contrast-limited adaptive histogram equalization with dual gamma correction. IEEE Access 6:11782–11792

    Article  Google Scholar 

  50. Misra I, Rout L, Arya S, Bhateja Y, Moorthi SM, Dhar D (2021) Phobos image enhancement using unpaired multi-frame acquisitions from Indian Mars color camera. Planet Space Sci 201:105215

    Article  Google Scholar 

  51. Misra I, Rohil MK, Moorthi SM, Dhar D (2021) FIRM: framework for image registration using multistage feature detection and mode-guided motion smoothness keypoint optimization. IEEE Trans Geosciand Remote Sens 60:1–12

    Google Scholar 

  52. Hossein-Nejad Z, Agahi H, Mahmoodzadeh A (2021) Image matching based on the adaptive redundant keypoint elimination method in the SIFT algorithm. Pattern Anal Appl 24(2):669–683

    Article  Google Scholar 

  53. Tao Yu, Muller J-P, Poole W (2016) Automated localisation of Mars rovers using co-registered HiRISE-CTX-HRSC orthorectified images and wide baseline Navcam orthorectified mosaics. Icarus 280:139–157

    Article  ADS  Google Scholar 

  54. Yu M, Yang H, Deng K, Yuan K (2018) Registrating oblique images by integrating affine and scale-invariant features. Int J Remote Sens 39(10):3386–3405

    Article  Google Scholar 

  55. Misra I, Rohil MK, Moorthi SM, Dhar D (2022) Feature based remote sensing image registration techniques: a comprehensive and comparative review. Int J Remote Sens. https://doi.org/10.1080/01431161.2022.2114112

    Article  Google Scholar 

  56. Zheng Z, Ma Y, Zheng H, Jianping Ju, Lin M (2018) UGC: Real-time, ultra-robust feature correspondence via unilateral grid-based clustering. IEEE Access 6:55501–55508

    Article  Google Scholar 

  57. Choi S, Kim T, Wonpil Yu (1997) Performance evaluation of RANSAC family. J Comput Vis 24(3):271–300

    Article  Google Scholar 

  58. Misra I, Rohil MK, Subbiah MM, Dhar D (2021) EPOCH: enhanced procedure for operational change detection using historical invariant features and PCA guided multivariate statistical technique. Geocarto Int 37:1–21

    Google Scholar 

  59. Liu J, Liang S (2016) Pan-sharpening using a guided filter. Int J Remote Sens 37(8):1777–1800

    Article  Google Scholar 

  60. Prema G, Arivazhagan S (2022) "Infrared and visible image fusion via multi-scale multi-layer rolling guidance filter. Pattern Anal Appl 25:1–18

    Article  Google Scholar 

  61. Chen G, Zhu F, and Heng PA (2015). An efficient statistical method for image noise level estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 477–485

  62. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  63. Liu L, Liu B, Huang H, Bovik AC (2014) No-reference image quality assessment based on spatial and spectral entropies. Signal Process: Image Commun 29(8):856–863

    Google Scholar 

  64. Misra I, Moorthi SM, Dhar D, and Ramakrishnan R(2012). "An automatic satellite image registration technique based on Harris corner detection and Random Sample Consensus (RANSAC) outlier rejection model. In: 2012 1st International Conference on Recent Advances in Information Technology (RAIT), pp. 68–73. IEEE

  65. Chibani Y, Houacine A (2002) The joint use of IHS transform and redundant wavelet decomposition for fusing multispectral and panchromatic images. Int J Remote Sens 23(18):3821–3833

    Article  Google Scholar 

  66. Fernandez-Beltran R, Latorre-Carmona P, Pla F (2017) Single-frame super-resolution in remote sensing: a practical overview. Int J Remote Sens 38(1):314–354

    Article  Google Scholar 

  67. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  ADS  PubMed  Google Scholar 

  68. Batson RM, Kirk RL, Edwards K, Morgan HF (1994) Venus cartography. J Geophys Res: Planets 99(E10):21173–21181

    Article  Google Scholar 

  69. Basilevsky AT, Shalygin EV, Titov DV, Markiewicz WJ, Scholten F, Roatsch T, Kreslavsky MA et al (2012) Geologic interpretation of the near-infrared images of the surface taken by the Venus monitoring camera, Venus express. Icarus 217(2):434–450

    Article  ADS  Google Scholar 

  70. Seidpisheh M, Bamdadi R (2022) Fuzzy and non-fuzzy k-quantile clustering for high-variance data. Pattern Anal Appl 26:1–12

    Google Scholar 

  71. Bonnet N, Cutrona J, Herbin M (2002) A ‘no-threshold’ histogram-based image segmentation method. Pattern Recogn 35(10):2319–2322

    Article  ADS  Google Scholar 

  72. Huet F, Philipp S (1998) Fusion of images interpreted by a new fuzzy classifier. Pattern Anal Appl 1(4):231–247

    Article  Google Scholar 

  73. M Kenneth (2009). "Diverging color maps for scientific visualization. In: International Symposium on Visual Computing, pp. 92–103. Springer: Berlin

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Misra.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, I., Rohil, M.K., Moorthi, S. et al. A novel Venus’ visible image processing neoteric workflow for improved planetary surface feature analysis. Pattern Anal Applic 27, 31 (2024). https://doi.org/10.1007/s10044-024-01253-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10044-024-01253-4

Keywords

Navigation