Skip to main content
Log in

Formulation and evaluation of polarization-modulated triple-view information display with three TN-LCD layers

  • Special Section: Regular Paper
  • Laser Display and Lighting Conference (LDC’ 23), Yokohama, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We have derived formulation and evaluation of polarization-modulated triple-view information display with three TN-LCD layers. The proposed display is composed of three liquid–crystal display (LCD) panels that are placed at a certain gap between polarizers. The viewed image is generated after polarization modulations by the three LCD panels. The polarization modulated results depend on the view directions. Thus, information of three binary images is shared between the displayed images on the three LCD panels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Yamamoto, H.: Multi-functional display by use of polarization processing. Tech. Digest Inf. Photonics 2008, 254–255 (2008)

    Google Scholar 

  2. Gotoda, H.: A multilayer liquid crystal display for autostereoscopic 3D viewing. Proc. SPIE 7524, 75240P (2010)

    Article  ADS  Google Scholar 

  3. Lanman, D., Wetzsein, G., Hirsch, M., Heidrich, W., Raskar, R.: Polarization fields: dynamic light field display using multi-layer LCDs. ACM Trans. Graphics 30(6), 186 (2011)

    Article  Google Scholar 

  4. Yamamto, H., Hayasaki, Y., Nishida, N.: Securing information display by use of visual cryptography. Opt. Lett. 28(17), 1564–1566 (2003)

    Article  ADS  Google Scholar 

  5. Yamamoto, H., Hayasaki, Y., Nishida, N.: Secure information display with two limited viewing zones using two decoding masks based on visual secret sharing scheme. Japan. J. Appl. Phys. 44(4A), 1803–1807 (2005)

    Article  ADS  Google Scholar 

  6. Yamamoto, H., Hayasaki, Y., Nishida, N.: Opt. Lett. 28, 1564 (2003)

    Article  ADS  Google Scholar 

  7. Yamamoto, H., Kajimoto, K., Imagawa, T., Suyama, S.: Use of polarization-scrambling filter for secure display. Proc. IDW 3, 1909–1912 (2009)

    Google Scholar 

  8. Yamamoto, H., Kajimoto, K., Suyama, S.: Secure display with head-tracking viewing zone. Proc. IDW 3, 2101–2104 (2010)

    Google Scholar 

  9. Yamamoto, H., Tomiyama, Y., Suyama, S.: Opt. Express 22, 26919 (2014)

    Article  ADS  Google Scholar 

  10. Yamamoto, H., Suyama, S.: SID 2013 DIGEST, 895 (2013)

  11. Uchida, K., Yamamoto, H., Suyama, S.: Multi-functional display by use of three-layered LCD panels, IMID 2013 DIGEST, p. 228 (2013)

  12. Uchida, K., Suyama, S., Yamamoto, H.: Three-layered secure display based on polarization modulation. Proc. IDW 5, 1329–1332 (2012)

    Google Scholar 

  13. Uchida, K., Suyama, S., Yamamoto, H.: Triple-view and secure dual-view display by use of three-layered LCD panels. Proc. IDW 6, 610–613 (2013)

    Google Scholar 

  14. Uchida, K., Suyama, S., Yamamoto, H.: Horizontal and vertical triple-view display by use of three-layered LCD panels, JSAP-OSA Joint Symposia 2013, 17p-D5–11 (2013)

  15. Uchida, K., Yamamoto, H., Suyama, S.: Deterministic formulas for horizontal and vertical triple-view display, LDC2023 (The 12th Laser Display and Lighting Conference 2023), LDC-PD-04 (2023)

Download references

Funding

This article is funded by Japan Society for the Promotion of Science, 20H05702, Hirotsugu Yamamoto, Accelerated Innovation Research Initiative Turning Top Science and Ideas into High-Impact Values, JPMJAC1601, Hirotsugu Yamamoto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotsugu Yamamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The procedure for deriving the general solution is described. When the center viewpoint is included, Eqs. (1618) are used as examples; when the center viewpoint is not included, the results of the study for all combinations are noted.

$$\begin{array}{c}{{\text{U}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}-1}\end{array}$$
(37)
$$\begin{array}{c}{{\text{C}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}}\end{array}$$
(38)
$${\text{R}}_{{{\text{k}},{\text{l}}}} = {\text{r}}_{{{\text{k}} - 1,{\text{l}}}} \oplus {\text{m}}_{{{\text{k}},{\text{l}}}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}}}}$$
(39)

To solve the simultaneous equation of XOR, we make a sum of the same terms.

(37) \(\oplus\)(38)l+1

$${\text{U}}_{{{\text{k}},{\text{l}}}} \oplus {\text{C}}_{{{\text{k}},{\text{l}} + 1}} = {\text{r}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{r}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{m}}_{{{\text{k}},{\text{l}}}} \oplus {\text{m}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{f}}_{{{\text{k}},{\text{l}} - 1}} \oplus {\text{f}}_{{{\text{k}},{\text{l}} + 1}} \Rightarrow {\text{U}}_{{{\text{k}},{\text{l}}}} \oplus {\text{C}}_{{{\text{k}},{\text{l}} + 1}} = {\text{m}}_{{{\text{k}},{\text{l}}}} \oplus {\text{m}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{f}}_{{{\text{k}},{\text{l}} - 1}} \oplus {\text{f}}_{{{\text{k}},{\text{l}} + 1}}$$
(40)

(37) \(\oplus\)(38)

$$\begin{array}{c}{{\text{U}}}_{{\text{k}},{\text{l}}}\oplus {{\text{C}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}}\oplus {{\text{r}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}-1}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}}\end{array}$$
(41)

(37)l+1 \(\oplus\)(38)

$$\begin{array}{c}{{\text{U}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{C}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}}\oplus {{\text{r}}}_{{\text{k}},{\text{l}}+2}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}+1}\end{array}$$
(42)

(39) \(\oplus\)(39)l+1

$$\begin{array}{c}{{\text{R}}}_{{\text{k}},{\text{l}}}\oplus {{\text{R}}}_{{\text{k}},{\text{l}}+1}={{\text{r}}}_{{\text{k}}-1,{\text{l}}}\oplus {{\text{r}}}_{{\text{k}}-1,{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}+1}\end{array}$$
(43)

(42) \(\oplus\)(43)

$$\begin{array}{c}{{\text{U}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{C}}}_{{\text{k}},{\text{l}}}\oplus {{\text{R}}}_{{\text{k}},{\text{l}}}\oplus {{\text{R}}}_{{\text{k}},{\text{l}}+1}={{\text{r}}}_{{\text{k}}-1,{\text{l}}}\oplus {{\text{r}}}_{{\text{k}}-1,{\text{l}}+1}\oplus {{\text{r}}}_{{\text{k}},{\text{l}}}\oplus {{\text{r}}}_{{\text{k}},{\text{l}}+2}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}+1}\end{array}$$
(44)

(41)k+1, l+1 \(\oplus\)(44)

$${\text{U}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{U}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{C}}_{{{\text{k}},{\text{l}}}} \oplus {\text{C}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{R}}_{{{\text{k}},{\text{l}}}} \oplus {\text{R}}_{{{\text{k}},{\text{l}} + 1}} \begin{array}{*{20}c} { = {\text{r}}_{{{\text{k}} - 1,{\text{l}}}} \oplus {\text{r}}_{{{\text{k}} - 1,{\text{l}} + 1}} \oplus {\text{r}}_{{{\text{k}},{\text{l}}}} \oplus {\text{r}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}} + 2}} } \\ \end{array}$$
(45)

(39) \(\oplus\)(39)l+2

$$\begin{array}{c}{{\text{R}}}_{{\text{k}},{\text{l}}}\oplus {{\text{R}}}_{{\text{k}},{\text{l}}+2}={{\text{r}}}_{{\text{k}}-1,{\text{l}}}\oplus {{\text{r}}}_{{\text{k}}-1,{\text{l}}+2}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}+2}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}+2}\end{array}$$
(46)

(40)k+1, l+1 \(\oplus\)(46)

$$\begin{gathered} {\text{U}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{C}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{R}}_{{{\text{k}},{\text{l}}}} \oplus {\text{R}}_{{{\text{k}},{\text{l}} + 2}} \hfill \\ = {\text{r}}_{{{\text{k}} - 1,{\text{l}}}} \oplus {\text{r}}_{{{\text{k}} - 1,{\text{l}} + 2}} \oplus {\text{m}}_{{{\text{k}},{\text{l}}}} \oplus {\text{m}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}} + 2}} \hfill \\ \end{gathered}$$
(47)

(42) \(\oplus\)(47)k+1

$$\begin{gathered} {\text{U}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{U}}_{{{\text{k}} + 2,{\text{l}} + 1}} \oplus {\text{C}}_{{{\text{k}},{\text{l}}}} \oplus {\text{C}}_{{{\text{k}} + 2,{\text{l}} + 2}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}} + 2}} \hfill \\ = {\text{m}}_{{{\text{k}},{\text{l}}}} \oplus {\text{m}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{m}}_{{{\text{k}} + 2,{\text{l}} + 1}} \oplus {\text{m}}_{{{\text{k}} + 2,{\text{l}} + 2}} \hfill \\ \end{gathered}$$
(48)

(40) \(\oplus\)(43)

$$\begin{array}{c}{{\text{U}}}_{{\text{k}},{\text{l}}}\oplus {{\text{C}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{R}}}_{{\text{k}},{\text{l}}}\oplus {{\text{R}}}_{{\text{k}},{\text{l}}+1}={{\text{r}}}_{{\text{k}}-1,{\text{l}}}\oplus {{\text{r}}}_{{\text{k}}-1,{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}-1}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}+1}\end{array}$$
(49)

(41) \(\oplus\)(49)k+1

$$\begin{gathered} {\text{U}}_{{{\text{k}},{\text{l}}}} \oplus {\text{U}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{C}}_{{{\text{k}},{\text{l}}}} \oplus {\text{C}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}} + 1}} \hfill \\ = {\text{f}}_{{{\text{k}},{\text{l}} - 1}} \oplus {\text{f}}_{{{\text{k}},{\text{l}}}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{f}}_{{{\text{k}} + 2,{\text{l}}}} \oplus {\text{f}}_{{{\text{k}} + 2,{\text{l}} + 1}} \hfill \\ \end{gathered}$$
(50)

From these results, the general formula for triple-view display (upper, center, right) is as follows

$${{\text{r}}}_{{\text{k}},{\text{l}}}\oplus {{\text{r}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{r}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{r}}}_{{\text{k}}+1,{\text{l}}+2}\oplus {{\text{r}}}_{{\text{k}}+2,{\text{l}}+1}\oplus {{\text{r}}}_{{\text{k}}+2,{\text{l}}+2}={{\text{U}}}_{{\text{k}}+1,{\text{l}}+1}\oplus {{\text{U}}}_{{\text{k}}+2,{\text{l}}+1}\oplus {{\text{C}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{C}}}_{{\text{k}}+2,{\text{l}}+1}\oplus {{\text{R}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{R}}}_{{\text{k}}+1,{\text{l}}+1}$$
$${{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{m}}}_{{\text{k}}+1,{\text{l}}+2}\oplus {{\text{m}}}_{{\text{k}}+2,{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}}+2,{\text{l}}+2}={{\text{U}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{U}}}_{{\text{k}}+2,{\text{l}}+1}\oplus {{\text{C}}}_{{\text{k}},{\text{l}}}\oplus {{\text{C}}}_{{\text{k}}+2,{\text{l}}+2}\oplus {{\text{R}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{R}}}_{{\text{k}}+1,{\text{l}}+2}$$
$${{\text{f}}}_{{\text{k}},{\text{l}}}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}+2}\oplus {{\text{f}}}_{{\text{k}}+2,{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}}+2,{\text{l}}+2}={{\text{U}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{U}}}_{{\text{k}}+1,{\text{l}}+1}\oplus {{\text{C}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{C}}}_{{\text{k}}+1,{\text{l}}+2}\oplus {{\text{R}}}_{{\text{k}}+1,{\text{l}}+1}\oplus {{\text{R}}}_{{\text{k}}+1,{\text{l}}+2}$$

Solving simultaneous equations with \({{\text{U}}}_{{\text{k}},{\text{l}}}\), \({{\text{L}}}_{{\text{k}},{\text{l}}}\), and \({{\text{R}}}_{{\text{k}},{\text{l}}}\).

$$\begin{array}{c}{{\text{U}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}-1}\end{array}$$
(51)
$$\begin{array}{c}{{\text{L}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}-1,{\text{l}}}\end{array}$$
(52)
$$\begin{array}{c}{{\text{R}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}}-1,{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}}\end{array}$$
(53)

Solve the above XOR simultaneous equations.

(51)k+1 \(\oplus\)(52)l+1

$$\begin{array}{c}{{\text{U}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{L}}}_{{\text{k}},{\text{l}}+1}={{\text{m}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}-1,{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}-1}\end{array}$$
(54)

(51) \(\oplus\)(52)

$$\begin{array}{c}{{\text{U}}}_{{\text{k}},{\text{l}}}\oplus {{\text{L}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{r}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}-1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}-1}\end{array}$$
(55)

(51)l+1 \(\oplus\)(52)k+1

$$\begin{array}{c}{{\text{U}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{L}}}_{{\text{k}}+1,{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}+2}\oplus {{\text{r}}}_{{\text{k}}+2,{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}}+1,{\text{l}}}\end{array}$$
(56)

(53)l+1 \(\oplus\)(53)k+1

$$\begin{array}{c}{{\text{R}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{R}}}_{{\text{k}}+1,{\text{l}}}={{\text{r}}}_{{\text{k}}-1,{\text{l}}+1}\oplus {{\text{r}}}_{{\text{k}},{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}}+2,{\text{l}}}\end{array}$$
(57)

(55)k+2, l+1 \(\oplus\)(57)

$$\begin{array}{*{20}c} {{\text{U}}_{{{\text{k}} + 2,{\text{l}} + 1}} \oplus {\text{L}}_{{{\text{k}} + 2,{\text{l}} + 1}} \oplus {\text{R}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}}}} = {\text{r}}_{{{\text{k}} - 1,{\text{l}} + 1}} \oplus {\text{r}}_{{{\text{k}},{\text{l}}}} \oplus {\text{r}}_{{{\text{k}} + 2,{\text{l}} + 2}} \oplus {\text{r}}_{{{\text{k}} + 3,{\text{l}} + 1}} \oplus {\text{m}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}}}} } \\ \end{array}$$
(58)

(56) \(\oplus\)(58)

$$\begin{gathered} {\text{U}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{U}}_{{{\text{k}} + 2,{\text{l}} + 1}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{L}}_{{{\text{k}} + 2,{\text{l}} + 1}} \oplus {\text{R}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}}}} \hfill \\ = {\text{r}}_{{{\text{k}} - 1,{\text{l}} + 1}} \oplus {\text{r}}_{{{\text{k}},{\text{l}}}} \oplus {\text{r}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{r}}_{{{\text{k}} + 2,{\text{l}}}} \oplus {\text{r}}_{{{\text{k}} + 2,{\text{l}} + 2}} \oplus {\text{r}}_{{{\text{k}} + 3,{\text{l}} + 1}} \hfill \\ \end{gathered}$$
(59)

(53)k+1, l+2 \(\oplus\)(53)k+3

$$\begin{array}{c}{{\text{R}}}_{{\text{k}}+1,{\text{l}}+2}\oplus {{\text{R}}}_{{\text{k}}+3,{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}+2}\oplus {{\text{r}}}_{{\text{k}}+2,{\text{l}}}\oplus {{\text{m}}}_{{\text{k}}+1,{\text{l}}+2}\oplus {{\text{m}}}_{{\text{k}}+3,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}+2,{\text{l}}+2}\oplus {{\text{f}}}_{{\text{k}}+4,{\text{l}}}\end{array}$$
(60)

(56) \(\oplus\)(60)

$$\begin{array}{*{20}c} {{\text{U}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{R}}_{{{\text{k}} + 3,{\text{l}}}} = {\text{m}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{m}}_{{{\text{k}} + 3,{\text{l}}}} \oplus {\text{f}}_{{{\text{k}} + 2,{\text{l}} + 2}} \oplus {\text{f}}_{{{\text{k}} + 4,{\text{l}}}} } \\ \end{array}$$
(61)

(54)k+3, l+1 \(\oplus\)(61)

$$\begin{gathered} {\text{U}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{U}}_{{{\text{k}} + 4,{\text{l}} + 1}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{L}}_{{{\text{k}} + 3,{\text{l}} + 2}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{R}}_{{{\text{k}} + 3,{\text{l}}}} \hfill \\ = {\text{m}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{m}}_{{{\text{k}} + 3,{\text{l}}}} \oplus {\text{m}}_{{{\text{k}} + 3,{\text{l}} + 2}} \oplus {\text{m}}_{{{\text{k}} + 4,{\text{l}} + 1}} \hfill \\ \end{gathered}$$
(62)

(53)l+1 \(\oplus\)(53)k+1

$$\begin{array}{c}{{\text{R}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{R}}}_{{\text{k}}+1,{\text{l}}}={{\text{r}}}_{{\text{k}}-1,{\text{l}}+1}\oplus {{\text{r}}}_{{\text{k}},{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}}+2,{\text{l}}}\end{array}$$
(63)

(54) \(\oplus\)(63)

$$\begin{array}{*{20}c} {{\text{U}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{L}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{R}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}}}} = {\text{r}}_{{{\text{k}} - 1,{\text{l}} + 1}} \oplus {\text{r}}_{{{\text{k}},{\text{l}}}} \oplus {\text{f}}_{{{\text{k}} - 1,{\text{l}} + 1}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{f}}_{{{\text{k}} + 2,{\text{l}}}} } \\ \end{array}$$
(64)

(55) \(\oplus\)(64)k+1

$$\begin{gathered} {\text{U}}_{{{\text{k}},{\text{l}}}} \oplus {\text{U}}_{{{\text{k}} + 2,{\text{l}}}} \oplus {\text{L}}_{{{\text{k}},{\text{l}}}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{R}}_{{{\text{k}} + 2,{\text{l}}}} \hfill \\ = {\text{f}}_{{{\text{k}} - 1,{\text{l}}}} \oplus {\text{f}}_{{{\text{k}},{\text{l}} - 1}} \oplus {\text{f}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{f}}_{{{\text{k}} + 2,{\text{l}} - 1}} \oplus {\text{f}}_{{{\text{k}} + 2,{\text{l}} + 1}} \oplus {\text{f}}_{{{\text{k}} + 3,{\text{l}}}} \hfill \\ \end{gathered}$$
(65)

From these results, the general formula for triple-view display (upper, left, right) is as follows

$$\begin{gathered} {\text{r}}_{{{\text{k}},{\text{l}}}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{r}}_{{{\text{k}} + 3,{\text{l}} - 1}} \oplus {\text{r}}_{{{\text{k}} + 3,{\text{l}} + 1}} \oplus {\text{r}}_{{{\text{k}} + 4,{\text{l}}}} \hfill \\ = {\text{U}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{U}}_{{{\text{k}} + 3,{\text{l}}}} \oplus {\text{L}}_{{{\text{k}} + 2,{\text{l}} - 1}} \oplus {\text{L}}_{{{\text{k}} + 3,{\text{l}}}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{R}}_{{{\text{k}} + 2,{\text{l}} - 1}} \hfill \\ {\text{m}}_{{{\text{k}},{\text{l}}}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{m}}_{{{\text{k}} + 3,{\text{l}} - 1}} \oplus {\text{m}}_{{{\text{k}} + 3,{\text{l}} + 1}} \oplus {\text{m}}_{{{\text{k}} + 4,{\text{l}}}} \hfill \\ = {\text{U}}_{{{\text{k}},{\text{l}}}} \oplus {\text{U}}_{{{\text{k}} + 4,{\text{l}}}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{L}}_{{{\text{k}} + 3,{\text{l}} + 1}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{R}}_{{{\text{k}} + 3,{\text{l}} - 1}} \hfill \\ {\text{f}}_{{{\text{k}},{\text{l}}}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{f}}_{{{\text{k}} + 3,{\text{l}} - 1}} \oplus {\text{f}}_{{{\text{k}} + 3,{\text{l}} + 1}} \oplus {\text{f}}_{{{\text{k}} + 4,{\text{l}}}} \hfill \\ = {\text{U}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{U}}_{{{\text{k}} + 3,{\text{l}}}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{L}}_{{{\text{k}} + 2,{\text{l}} + 1}} \oplus {\text{R}}_{{{\text{k}} + 2,{\text{l}} + 1}} \oplus {\text{R}}_{{{\text{k}} + 3,{\text{l}}}} \hfill \\ \end{gathered}$$

Solving simultaneous equations with \({{\text{U}}}_{{\text{k}},{\text{l}}}\), \({{\text{L}}}_{{\text{k}},{\text{l}}}\), and \({{\text{B}}}_{{\text{k}},{\text{l}}}\).

$$\begin{array}{c}{{\text{U}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}-1}\end{array}$$
(66)
$$\begin{array}{c}{{\text{L}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}-1,{\text{l}}}\end{array}$$
(67)
$$\begin{array}{c}{{\text{B}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}-1}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}+1}\end{array}$$
(68)

Solve the above XOR simultaneous equations.

(66)k+1 \(\oplus\)(67)l+1

$$\begin{array}{c}{{\text{U}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{L}}}_{{\text{k}},{\text{l}}+1}={{\text{m}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}-1,{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}-1}\end{array}$$
(69)

(66) \(\oplus\)(67)

$$\begin{array}{c}{{\text{U}}}_{{\text{k}},{\text{l}}}\oplus {{\text{L}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{r}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}-1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}-1}\end{array}$$
(70)

(66)l+1 \(\oplus\)(67)k+1

$$\begin{array}{c}{{\text{U}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{L}}}_{{\text{k}}+1,{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}+2}\oplus {{\text{r}}}_{{\text{k}}+2,{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}}+1,{\text{l}}}\end{array}$$
(71)

(68)l+1 \(\oplus\)(68)k+1

$$\begin{array}{c}{{\text{B}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{B}}}_{{\text{k}}+1,{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}}\oplus {{\text{r}}}_{{\text{k}}+1,{\text{l}}-1}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}+2}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}+1}\end{array}$$
(72)

(71) \(\oplus\)(72)

$$\begin{array}{*{20}c} {{\text{U}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{B}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{B}}_{{{\text{k}} + 1,{\text{l}}}} = {\text{r}}_{{{\text{k}},{\text{l}}}} \oplus {\text{r}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{r}}_{{{\text{k}} + 2,{\text{l}}}} \oplus {\text{f}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} + 1}} } \\ \end{array}$$
(73)

(70)k+1, l+2 \(\oplus\)(73)

$$\begin{gathered} {\text{U}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{U}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{B}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{B}}_{{{\text{k}} + 1,{\text{l}}}} \hfill \\ = {\text{r}}_{{{\text{k}},{\text{l}}}} \oplus {\text{r}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}} + 3}} \oplus {\text{r}}_{{{\text{k}} + 2,{\text{l}}}} \oplus {\text{r}}_{{{\text{k}} + 2,{\text{l}} + 2}} \hfill \\ \end{gathered}$$
(74)

(68)l+2 \(\oplus\)(68)k+2

$$\begin{array}{c}{{\text{B}}}_{{\text{k}},{\text{l}}+2}\oplus {{\text{B}}}_{{\text{k}}+2,{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{r}}}_{{\text{k}}+2,{\text{l}}-1}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}+2}\oplus {{\text{m}}}_{{\text{k}}+2,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}+3}\oplus {{\text{f}}}_{{\text{k}}+2,{\text{l}}+1}\end{array}$$
(75)

(69)k+1, l+2 \(\oplus\)(75)

$$\begin{gathered} {\text{U}}_{{{\text{k}} + 2,{\text{l}} + 2}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}} + 3}} \oplus {\text{B}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{B}}_{{{\text{k}} + 2,{\text{l}}}} \hfill \\ = {\text{r}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{r}}_{{{\text{k}} + 2,{\text{l}} - 1}} \oplus {\text{m}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}} + 3}} \oplus {\text{m}}_{{{\text{k}} + 2,{\text{l}}}} \oplus {\text{m}}_{{{\text{k}} + 2,{\text{l}} + 2}} \hfill \\ \end{gathered}$$
(76)

(71) \(\oplus\)(76)l+1

$$\begin{array}{*{20}c} {{\text{U}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{U}}_{{{\text{k}} + 2,{\text{l}} + 3}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}} + 4}} \oplus {\text{B}}_{{{\text{k}},{\text{l}} + 3}} \oplus {\text{B}}_{{{\text{k}} + 2,{\text{l}} + 1}} } \\ { = {\text{m}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{m}}_{{{\text{k}},{\text{l}} + 3}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}} + 4}} \oplus {\text{m}}_{{{\text{k}} + 2,{\text{l}} + 1}} \oplus {\text{m}}_{{{\text{k}} + 2,{\text{l}} + 3}} } \\ \end{array}$$
(77)

(69) \(\oplus\)(72)

$$\begin{array}{*{20}c} {{\text{U}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{L}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{B}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{B}}_{{{\text{k}} + 1,{\text{l}}}} = {\text{r}}_{{{\text{k}},{\text{l}}}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{f}}_{{{\text{k}} - 1,{\text{l}} + 1}} \oplus {\text{f}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} + 1}} } \\ \end{array}$$
(78)

(70) \(\oplus\)(78)l+1

$$\begin{array}{c}{{\text{U}}}_{{\text{k}},{\text{l}}}\oplus {{\text{U}}}_{{\text{k}}+1,{\text{l}}+1}\oplus {{\text{L}}}_{{\text{k}},{\text{l}}}\oplus {{\text{L}}}_{{\text{k}},{\text{l}}+2}\oplus {{\text{B}}}_{{\text{k}},{\text{l}}+2}\oplus {{\text{B}}}_{{\text{k}}+1,{\text{l}}+1}\\ ={{\text{f}}}_{{\text{k}}-1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}-1,{\text{l}}+2}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}-1}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}+3}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}+2}\end{array}$$
(79)

From these results, the general formula for triple-view display (upper, left, bottom) is as follows

$$\begin{gathered} {\text{r}}_{{{\text{k}},{\text{l}}}} \oplus {\text{r}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}} + 3}} \oplus {\text{r}}_{{{\text{k}} + 2,{\text{l}}}} \oplus {\text{r}}_{{{\text{k}} + 2,{\text{l}} + 2}} \hfill \\ = {\text{U}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{U}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{B}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{B}}_{{{\text{k}} + 1,{\text{l}}}} \hfill \\ {\text{m}}_{{{\text{k}},{\text{l}}}} \oplus {\text{m}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}} + 3}} \oplus {\text{m}}_{{{\text{k}} + 2,{\text{l}}}} \oplus {\text{m}}_{{{\text{k}} + 2,{\text{l}} + 2}} \hfill \\ = {\text{U}}_{{{\text{k}},{\text{l}}}} \oplus {\text{U}}_{{{\text{k}} + 2,{\text{l}} + 2}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}} + 3}} \oplus {\text{B}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{B}}_{{{\text{k}} + 2,{\text{l}}}} \hfill \\ {\text{f}}_{{{\text{k}},{\text{l}}}} \oplus {\text{f}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} + 3}} \oplus {\text{f}}_{{{\text{k}} + 2,{\text{l}}}} \oplus {\text{f}}_{{{\text{k}} + 2,{\text{l}} + 2}} \hfill \\ = {\text{U}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{U}}_{{{\text{k}} + 2,{\text{l}} + 1}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{B}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{B}}_{{{\text{k}} + 2,{\text{l}} + 1}} \hfill \\ \end{gathered}$$

Solving simultaneous equations with \({{\text{L}}}_{{\text{k}},{\text{l}}}\), \({{\text{R}}}_{{\text{k}},{\text{l}}}\), and \({{\text{B}}}_{{\text{k}},{\text{l}}}\).

$$\begin{array}{c}{{\text{L}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}-1,{\text{l}}}\end{array}$$
(80)
$$\begin{array}{c}{{\text{R}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}}-1,{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}}\end{array}$$
(81)
$$\begin{array}{c}{{\text{B}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}-1}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}+1}\end{array}$$
(82)

Solve the above XOR simultaneous equations.

(80) \(\oplus\)(81)k+2

$$\begin{array}{c}{{\text{L}}}_{{\text{k}},{\text{l}}}\oplus {{\text{R}}}_{{\text{k}}+2,{\text{l}}}={{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{m}}}_{{\text{k}}+2,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}-1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}+3,{\text{l}}}\end{array}$$
(83)

(80) \(\oplus\)(81)

$$\begin{array}{c}{{\text{L}}}_{{\text{k}},{\text{l}}}\oplus {{\text{R}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}}-1,{\text{l}}}\oplus {{\text{r}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}-1,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}}\end{array}$$
(84)

(80)k+2 \(\oplus\)(81)

$$\begin{array}{c}{{\text{L}}}_{{\text{k}}+2,{\text{l}}}\oplus {{\text{R}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}}-1,{\text{l}}}\oplus {{\text{r}}}_{{\text{k}}+3,{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{m}}}_{{\text{k}}+2,{\text{l}}}\end{array}$$
(85)

(82) \(\oplus\)(82)k+2

$$\begin{array}{c}{{\text{B}}}_{{\text{k}},{\text{l}}}\oplus {{\text{B}}}_{{\text{k}}+2,{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}-1}\oplus {{\text{r}}}_{{\text{k}}+2,{\text{l}}-1}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{m}}}_{{\text{k}}+2,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}}+2,{\text{l}}+1}\end{array}$$
(86)

(84)k+1, l+1 \(\oplus\)(86)

$$\begin{array}{c}{{\text{L}}}_{{\text{k}}+1,{\text{l}}+1}\oplus {{\text{R}}}_{{\text{k}}+1,{\text{l}}+1}\oplus {{\text{B}}}_{{\text{k}},{\text{l}}}\oplus {{\text{B}}}_{{\text{k}}+2,{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}-1}\oplus {{\text{r}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{r}}}_{{\text{k}}+2,{\text{l}}-1}\oplus {{\text{r}}}_{{\text{k}}+2,{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{m}}}_{{\text{k}}+2,{\text{l}}}\end{array}$$
(87)

(85) \(\oplus\)(87)

$$\begin{gathered} {\text{L}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{L}}_{{{\text{k}} + 2,{\text{l}}}} \oplus {\text{R}}_{{{\text{k}},{\text{l}}}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{B}}_{{{\text{k}},{\text{l}}}} \oplus {\text{B}}_{{{\text{k}} + 2,{\text{l}}}} \hfill \\ \begin{array}{*{20}c} { = {\text{r}}_{{{\text{k}} - 1,{\text{l}}}} \oplus {\text{r}}_{{{\text{k}},{\text{l}} - 1}} \oplus {\text{r}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{r}}_{{{\text{k}} + 2,{\text{l}} - 1}} \oplus {\text{r}}_{{{\text{k}} + 2,{\text{l}} + 1}} \oplus {\text{r}}_{{{\text{k}} + 3,{\text{l}}}} } \\ \end{array} \hfill \\ \end{gathered}$$
(88)

(82)l+1 \(\oplus\)(82)k+4, l+1

$$\begin{array}{c}{{\text{B}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{B}}}_{{\text{k}}+4,{\text{l}}+1}={{\text{r}}}_{{\text{k}},{\text{l}}}\oplus {{\text{r}}}_{{\text{k}}+4,{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}}+4,{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}+2}\oplus {{\text{f}}}_{{\text{k}}+4,{\text{l}}+2}\end{array}$$
(89)

(85)k+1 \(\oplus\)(89)

$$\begin{array}{*{20}c} {{\text{L}}_{{{\text{k}} + 3,{\text{l}}}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{B}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{B}}_{{{\text{k}} + 4,{\text{l}} + 1}} = {\text{m}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{m}}_{{{\text{k}} + 3,{\text{l}}}} \oplus {\text{m}}_{{{\text{k}} + 4,{\text{l}} + 1}} \oplus {\text{f}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{f}}_{{{\text{k}} + 4,{\text{l}} + 2}} } \\ \end{array}$$
(90)

(83)k+1, l+2 \(\oplus\)(90)

$$\begin{gathered} {\text{L}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{L}}_{{{\text{k}} + 3,{\text{l}}}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{R}}_{{{\text{k}} + 3,{\text{l}} + 2}} \oplus {\text{B}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{B}}_{{{\text{k}} + 4,{\text{l}} + 1}} \hfill \\ \begin{array}{*{20}c} { = {\text{m}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{m}}_{{{\text{k}} + 3,{\text{l}}}} \oplus {\text{m}}_{{{\text{k}} + 3,{\text{l}} + 2}} \oplus {\text{m}}_{{{\text{k}} + 4,{\text{l}} + 1}} } \\ \end{array} \hfill \\ \end{gathered}$$
(91)

(82)l+1 \(\oplus\)(82)k+2, l+1

$$\begin{array}{c}{{\text{B}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{B}}}_{{\text{k}}+2,{\text{l}}+1}={{\text{r}}}_{{\text{k}},{\text{l}}}\oplus {{\text{r}}}_{{\text{k}}+2,{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}}+2,{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}+2}\oplus {{\text{f}}}_{{\text{k}}+2,{\text{l}}+2}\end{array}$$
(92)

(84)k+1 \(\oplus\)(92)

$$\begin{array}{c}{{\text{L}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{R}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{B}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{B}}}_{{\text{k}}+2,{\text{l}}+1}={{\text{m}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}}+2,{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}+2}\oplus {{\text{f}}}_{{\text{k}}+2,{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}+2,{\text{l}}+2}\end{array}$$
(93)

(83)l+1 \(\oplus\)(93)

$$\begin{gathered} {\text{L}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{R}}_{{{\text{k}} + 2,{\text{l}} + 1}} \oplus {\text{B}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{B}}_{{{\text{k}} + 2,{\text{l}} + 1}} \hfill \\ = {\text{f}}_{{{\text{k}} - 1,{\text{l}} + 1}} \oplus {\text{f}}_{{{\text{k}},{\text{l}}}} \oplus {\text{f}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{f}}_{{{\text{k}} + 2,{\text{l}}}} \oplus {\text{f}}_{{{\text{k}} + 2,{\text{l}} + 2}} \oplus {\text{f}}_{{{\text{k}} + 3,{\text{l}} + 1}} \hfill \\ \end{gathered}$$
(94)

From these results, the general formula for triple-view display (left, right, bottom) is as follows

$$\begin{gathered} {\text{r}}_{{{\text{k}},{\text{l}}}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{r}}_{{{\text{k}} + 3,{\text{l}} - 1}} \oplus {\text{r}}_{{{\text{k}} + 3,{\text{l}} + 1}} \oplus {\text{r}}_{{{\text{k}} + 4,{\text{l}}}} \hfill \\ = {\text{L}}_{{{\text{k}} + 2,{\text{l}} + 1}} \oplus {\text{L}}_{{{\text{k}} + 3,{\text{l}}}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{R}}_{{{\text{k}} + 2,{\text{l}} + 1}} \oplus {\text{B}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{B}}_{{{\text{k}} + 3,{\text{l}}}} \hfill \\ {\text{m}}_{{{\text{k}},{\text{l}}}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{m}}_{{{\text{k}} + 3,{\text{l}} - 1}} \oplus {\text{m}}_{{{\text{k}} + 3,{\text{l}} + 1}} \oplus {\text{m}}_{{{\text{k}} + 4,{\text{l}}}} \hfill \\ = {\text{L}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{L}}_{{{\text{k}} + 3,{\text{l}} - 1}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{R}}_{{{\text{k}} + 3,{\text{l}} + 1}} \oplus {\text{B}}_{{{\text{k}},{\text{l}}}} \oplus {\text{B}}_{{{\text{k}} + 4,{\text{l}}}} \hfill \\ {\text{f}}_{{{\text{k}},{\text{l}}}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{f}}_{{{\text{k}} + 3,{\text{l}} - 1}} \oplus {\text{f}}_{{{\text{k}} + 3,{\text{l}} + 1}} \oplus {\text{f}}_{{{\text{k}} + 4,{\text{l}}}} \hfill \\ = {\text{L}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{L}}_{{{\text{k}} + 2,{\text{l}} - 1}} \oplus {\text{R}}_{{{\text{k}} + 2,{\text{l}} - 1}} \oplus {\text{R}}_{{{\text{k}} + 3,{\text{l}}}} \oplus {\text{B}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{B}}_{{{\text{k}} + 3,{\text{l}}}} \hfill \\ \end{gathered}$$

Solving simultaneous equations with \({{\text{U}}}_{{\text{k}},{\text{l}}}\), \({{\text{R}}}_{{\text{k}},\mathrm{ l}}\), and \({{\text{B}}}_{{\text{k}},{\text{l}}}\).

$$\begin{array}{c}{{\text{U}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}-1}\end{array}$$
(95)
$$\begin{array}{c}{{\text{R}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}}-1,{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}}\end{array}$$
(96)
$$\begin{array}{c}{{\text{B}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}},{\text{l}}-1}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}+1}\end{array}$$
(97)

Solve the above XOR simultaneous equations.

(95) \(\oplus\)(96)k+1, l+1

$$\begin{array}{c}{{\text{U}}}_{{\text{k}},{\text{l}}}\oplus {{\text{R}}}_{{\text{k}}+1,{\text{l}}+1}={{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{m}}}_{{\text{k}}+1,{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}-1}\oplus {{\text{f}}}_{{\text{k}}+2,{\text{l}}+1}\end{array}$$
(98)

(95) \(\oplus\)(96)

$$\begin{array}{c}{{\text{U}}}_{{\text{k}},{\text{l}}}\oplus {{\text{R}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}}-1,{\text{l}}}\oplus {{\text{r}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}},\mathrm{ l}-1}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}}\end{array}$$
(99)

(95)k+1, l+1 \(\oplus\)(96)

$$\begin{array}{c}{{\text{U}}}_{{\text{k}}+1,{\text{l}}+1}\oplus {{\text{R}}}_{{\text{k}},{\text{l}}}={{\text{r}}}_{{\text{k}}-1,{\text{l}}}\oplus {{\text{r}}}_{{\text{k}}+1,{\text{l}}+2}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{m}}}_{{\text{k}}+1,{\text{l}}+1}\end{array}$$
(100)

(97) \(\oplus\)(97)k+1, l+1

$$\begin{array}{c}{{\text{B}}}_{{\text{k}},{\text{l}}}\oplus {{\text{B}}}_{{\text{k}}+1,{\text{l}}+1}={{\text{r}}}_{{\text{k}},{\text{l}}-1}\oplus {{\text{r}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{m}}}_{{\text{k}}+1,{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}}+1,{\text{l}}+2}\end{array}$$
(101)

(100) \(\oplus\)(101)

$$\begin{array}{*{20}c} {{\text{U}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{R}}_{{{\text{k}},{\text{l}}}} \oplus {\text{B}}_{{{\text{k}},{\text{l}}}} \oplus {\text{B}}_{{{\text{k}} + 1,{\text{l}} + 1}} = {\text{r}}_{{{\text{k}} - 1,{\text{l}}}} \oplus {\text{r}}_{{{\text{k}},{\text{l}} - 1}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{f}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} + 2}} } \\ \end{array}$$
(102)

(99)l+2 \(\oplus\)(102)

$$\begin{gathered} {\text{U}}_{{{\text{k}} + 1,{\text{l}} + 1}} \oplus {\text{U}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{R}}_{{{\text{k}},{\text{l}}}} \oplus {\text{R}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{B}}_{{{\text{k}},{\text{l}}}} \oplus {\text{B}}_{{{\text{k}} + 1,{\text{l}} + 1}} \hfill \\ = {\text{r}}_{{{\text{k}} - 1,{\text{l}}}} \oplus {\text{r}}_{{{\text{k}} - 1,{\text{l}} + 2}} \oplus {\text{r}}_{{{\text{k}},{\text{l}} - 1}} \oplus {\text{r}}_{{{\text{k}},{\text{l}} + 3}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}} + 2}} \hfill \\ \end{gathered}$$
(103)

(97) \(\oplus\)(97)k+2, l+2

$$\begin{array}{c}{{\text{B}}}_{{\text{k}},{\text{l}}}\oplus {{\text{B}}}_{{\text{k}}+2,{\text{l}}+2}={{\text{r}}}_{{\text{k}},{\text{l}}-1}\oplus {{\text{r}}}_{{\text{k}}+2,{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{m}}}_{{\text{k}}+2,{\text{l}}+2}\oplus {{\text{f}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{f}}}_{{\text{k}}+2,{\text{l}}+3}\end{array}$$
(104)

(98)l+2 \(\oplus\)(104)

$$\begin{array}{c}{{\text{U}}}_{{\text{k}},{\text{l}}+2}\oplus {{\text{R}}}_{{\text{k}}+1,{\text{l}}+3}\oplus {{\text{B}}}_{{\text{k}},{\text{l}}}\oplus {{\text{B}}}_{{\text{k}}+2,{\text{l}}+2}={{\text{r}}}_{{\text{k}},{\text{l}}-1}\oplus {{\text{r}}}_{{\text{k}}+2,{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}+2}\oplus {{\text{m}}}_{{\text{k}}+1,{\text{l}}+3}\oplus {{\text{m}}}_{{\text{k}}+2,{\text{l}}+2}\end{array}$$
(105)

(100)k+1 \(\oplus\)(105)l+1

$${{\text{U}}}_{{\text{k}},{\text{l}}+3}\oplus {{\text{U}}}_{{\text{k}}+2,{\text{l}}+1}\oplus {{\text{R}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{R}}}_{{\text{k}}+1,{\text{l}}+4}\oplus {{\text{B}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{B}}}_{{\text{k}}+2,{\text{l}}+3}\begin{array}{c}={{\text{m}}}_{{\text{k}},{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}},{\text{l}}+3}\oplus {{\text{m}}}_{{\text{k}}+1,{\text{l}}}\oplus {{\text{m}}}_{{\text{k}}+1,{\text{l}}+4}\oplus {{\text{m}}}_{{\text{k}}+2,{\text{l}}+1}\oplus {{\text{m}}}_{{\text{k}}+2,{\text{l}}+3}\end{array}$$
(106)

(99)k+1 \(\oplus\)(101)l+1

$$\begin{array}{*{20}c} {{\text{U}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{B}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{B}}_{{{\text{k}} + 1,{\text{l}} + 2}} = {\text{m}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{f}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{ l}} - 1}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} + 3}} \oplus {\text{f}}_{{{\text{k}} + 2,{\text{l}}}} } \\ \end{array}$$
(107)

(98)l+1 \(\oplus\)(107)

$$\begin{gathered} {\text{U}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{U}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{R}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{B}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{B}}_{{{\text{k}} + 1,{\text{l}} + 2}} \hfill \\ = {\text{f}}_{{{\text{k}},{\text{l}}}} \oplus {\text{f}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{ l}} - 1}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} + 3}} \oplus {\text{f}}_{{{\text{k}} + 2,{\text{l}}}} \oplus {\text{f}}_{{{\text{k}} + 2,{\text{l}} + 2}} \hfill \\ \end{gathered}$$
(108)

From these results, the general formula for triple-view display (upper, left, bottom) is as follows

$$\begin{gathered} {\text{r}}_{{{\text{k}},{\text{l}}}} \oplus {\text{r}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{r}}_{{{\text{k}} + 1,{\text{l}} + 3}} \oplus {\text{r}}_{{{\text{k}} + 2,{\text{l}}}} \oplus {\text{r}}_{{{\text{k}} + 2,{\text{l}} + 2}} \hfill \\ = {\text{U}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{U}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{B}}_{{{\text{k}},{\text{l}} + 1}} \oplus {\text{B}}_{{{\text{k}} + 1,{\text{l}}}} \hfill \\ {\text{m}}_{{{\text{k}},{\text{l}}}} \oplus {\text{m}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{m}}_{{{\text{k}} + 1,{\text{l}} + 3}} \oplus {\text{m}}_{{{\text{k}} + 2,{\text{l}}}} \oplus {\text{m}}_{{{\text{k}} + 2,{\text{l}} + 2}} \hfill \\ = {\text{U}}_{{{\text{k}},{\text{l}}}} \oplus {\text{U}}_{{{\text{k}} + 2,{\text{l}} + 2}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}} + 3}} \oplus {\text{B}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{B}}_{{{\text{k}} + 2,{\text{l}}}} \hfill \\ {\text{f}}_{{{\text{k}},{\text{l}}}} \oplus {\text{f}}_{{{\text{k}},{\text{l}} + 2}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} - 1}} \oplus {\text{f}}_{{{\text{k}} + 1,{\text{l}} + 3}} \oplus {\text{f}}_{{{\text{k}} + 2,{\text{l}}}} \oplus {\text{f}}_{{{\text{k}} + 2,{\text{l}} + 2}} \hfill \\ = {\text{U}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{U}}_{{{\text{k}} + 2,{\text{l}} + 1}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}}}} \oplus {\text{L}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{B}}_{{{\text{k}} + 1,{\text{l}} + 2}} \oplus {\text{B}}_{{{\text{k}} + 2,{\text{l}} + 1}} \hfill \\ \end{gathered}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchida, K., Suyama, S. & Yamamoto, H. Formulation and evaluation of polarization-modulated triple-view information display with three TN-LCD layers. Opt Rev 31, 215–224 (2024). https://doi.org/10.1007/s10043-024-00865-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-024-00865-9

Keywords

Navigation