Skip to main content
Log in

Investigation on tight focus of polarized beams through cylindrical dielectric interface

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this work, the polarized beams tightly focused through a cylindrical refractive-indices discontinuous dielectric interface was numerically investigated. The corresponding focal pattern calculation formula was deduced base on vectoral diffraction integration theory for the first time. The patterns through the cylindrical dielectric interface with different radii were revealed by numerical calculating and discussed in detail. In addition, the aberration factor of the integration formula was found out, and the phase compensation maps were successfully carried out for focal patterns correcting. The findings will be helpful to improve the spatial resolution of advanced optical microscope in probing samples encapsulated by micro pipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. As, V.D.N., Munro, P., Pereira, S., Braat, J., Torok, P.: Cylindrical vector beam focusing through a dielectric interface: comment. Opt. Express 12(5), 967–969 (2004)

    Article  ADS  Google Scholar 

  2. Suresh, P., Mariyal, C., Saraswathi, S., Rajesh, K.B., Pillai, T.V.S., Jaroszewicz, Z.: Tightly focusing of spirally polarized Quadratic Bessel Gaussian beam through a dielectric interface. Optik 125(3), 1264–1266 (2014)

    Article  ADS  Google Scholar 

  3. Zhang, Z., Pu, J., Wang, X.: Tightly focusing of linearly polarized vortex beams through a dielectric interface. Opt. Commun. 281(13), 3421–3426 (2008)

    Article  ADS  Google Scholar 

  4. Mahmoudi, A., Reihani, S.: The effect of immersion oil in optical tweezers. Opt. Express 19(16), 14794–14800 (2011)

    Article  ADS  Google Scholar 

  5. Hell, S., Reiner, G., Cremer, C., Stelzer, E.H.K.: Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. J. Microsc. 169(3), 391–405 (1993)

    Article  Google Scholar 

  6. Booth, M.J., Wilson, T.: Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction. J. Biomed. Opt. 6(3), 266 (2001)

    Article  ADS  Google Scholar 

  7. Yun, X., Zhang, Y., Tan, H.: Effect of aberration induced by refractive index mismatch on imaging in confocal microscopy. Laser Optoelectron. Prog. 2, 202–210 (2015)

    Google Scholar 

  8. Kolk, J.V.D., Lesina, A.C., Ramunno, L.: Effects of refractive index mismatch on SRS and CARS microscopy. Opt. Express 24(22), 25752 (2016)

    Article  ADS  Google Scholar 

  9. Baldwin, K.J., Batchelder, D.N.: Confocal Raman microspectroscopy through a planar interface. Appl. Spectrosc. 55(5), 517–524 (2001)

    Article  ADS  Google Scholar 

  10. Deng, S., Li, L., Cheng, Y., Li, R., Xu, Z.: Investigation of the influence of the aberration induced by a plane interface on STED microscopy. Opt. Express 17(3), 1714–1725 (2009)

    Article  ADS  Google Scholar 

  11. Gould, T.J., Burke, D., Bewersdorf, J., Booth, M.J.: Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt. Express 20(19), 20998–21009 (2012)

    Article  ADS  Google Scholar 

  12. Yu, W., Ji, Z., Dong, D., Yang, X., Xiao, Y.: Super-resolution deep imaging with hollow Bessel beam STED microscopy. Laser Photon. Rev. 10(1), 147–152 (2015)

    Article  ADS  Google Scholar 

  13. Cai, J.: Influence of refractive index mismatch on the optical aberration in two-photon three-dimensional optical data storage. Acta Optica Sinica 26(3), 443–446 (2006)

    Google Scholar 

  14. Marcinkevičius, A., Mizeikis, V., Juodkazis, S., Matsuo, S., Misawa, H.: Effect of refractive index-mismatch on laser microfabrication in silica glass. Appl. Phys. A 76(2), 257–260 (2003)

    Article  ADS  Google Scholar 

  15. Zhou, G., Gu, M.: Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal. Opt. Lett. 31(18), 2783–2785 (2006)

    Article  ADS  Google Scholar 

  16. Gan, Z., Cao, Y., Evans, R.A., Gu, M.: Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4(6), 2061 (2013)

    Article  ADS  Google Scholar 

  17. Török, P., Varga, P., Booker, G.R.: Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field I. J. Opt. Soc. Am. A 12(10), 2136–2144 (1995)

    Article  ADS  Google Scholar 

  18. Gu, M.: Advanced optical imaging theory. Springer, Berlin (2000)

    Book  Google Scholar 

  19. Cumming, B.P., Debbarma, S., Luther-Davies, B., Gu, M.: Effect of refractive index mismatch aberration in arsenic trisulfide. Appl. Phys. B 109(2), 227–232 (2012)

    Article  ADS  Google Scholar 

  20. Zhang, Z., Pu, J., Wang, X.: Tight focusing of radially and azimuthally polarized vortex beams through a uniaxial birefringent crystal. Appl. Opt. 47(12), 1963–1967 (2008)

    Article  ADS  Google Scholar 

  21. Yonezawa, K., Kozawa, Y., Sato, S.: Focusing of radially and azimuthally polarized beams through a uniaxial crystal. J. Opt. Soc. Am. A 25(2), 469–472 (2008)

    Article  ADS  Google Scholar 

  22. Xiao, C., Zhang, C., Zhu, J., Zhao, W., Bai, J., He, Q., Wang, K.: Influences of aberration on spatial resolution of STED microscope in probing a specimen with discontinuous refraction indices. Appl. Opt. 58(8), 2112–2120 (2019)

    Article  ADS  Google Scholar 

  23. Kuang, C., Yang, F., Zhao, W., Wang, G.: Study of the rise time in electroosmotic flow within a microcapillary. Anal. Chem. 81(16), 6590–6595 (2009)

    Article  Google Scholar 

  24. Kuang, C., Wang, G.: A novel far-field nanoscopic velocimetry for nanofluidics. Lab Chip 10, 240–245 (2010)

    Article  Google Scholar 

  25. Kuang, C., Zhao, W., Yang, F., Wang, G.: Measuring flow velocity distribution in microchannels using molecular tracers. Microfluid Nanofluid 7(4), 509–517 (2009)

    Article  Google Scholar 

  26. Kuang, C., Luo, D., Liu, X., Wang, G.: Study on factors enhancing photobleaching effect of fluorescent dye. Measurement 46(4), 1393–1398 (2013)

    Article  ADS  Google Scholar 

  27. Youngworth, K., Brown, T.: Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7(2), 77–87 (2000)

    Article  ADS  Google Scholar 

  28. Kotlyar, V.V., Nalimov, A.G.: Tightly focused laser light with azimuthal polarization and singular phase. Comput. Opt. 40(5), 642–648 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant NO. 61775181, 61378083, 11672229, 11504294, 51927804, 14JS106), Natural Science Foundation of the Education Department of the Shaanxi Provincial Government (Grant NO. 17JK0760) and Natural Science Basic Research Program of Shaanxi Province-Major Basic Research Project (Grant NO. 2016ZDJC-15, S2018-ZC-TD-0061), the Natural Science Foundation of Shaanxi Province of China (Grant NO. 2016JQ1030, 18JK0791). Yaoyu Cao thanks the finacial supports by National Natural Science Foundation of China (NSFC) (Grant 61605061, 61875073), Guangdong Provincial Innovation and Entrepreneurship Project (Grant 2016ZT06D081) and the Natural Science Foundation of Guangdong Province (Grant No. 2016A030313088)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Zhang or Yaoyu Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, C., Zhao, W. et al. Investigation on tight focus of polarized beams through cylindrical dielectric interface. Opt Rev 28, 358–367 (2021). https://doi.org/10.1007/s10043-021-00668-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-021-00668-2

Navigation