Skip to main content
Log in

Driving liquid crystal lens without LC molecular orientation defects induced by an electric field

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Using the finite element method, we numerically investigated the transient behavior of molecular orientations of a liquid crystal (LC) lens with a circular electrode beside a hole-patterned electrode and a common flat electrode that has a resistive film. The transient properties of a three-dimensional electric field and the molecular orientations of the LC were simultaneously calculated when voltages were applied across a circular electrode/circularly hole-patterned electrode and a common electrode. The axially symmetric and bell-like distribution of the refractive index could also be obtained. When relatively high voltages were applied to the LC lens, LC molecular orientation defects, such as the disclination line, occurred in the inner region of the circularly hole-patterned electrode. The behavior of the LC directors at the defects were estimated, and transient properties of their phase profiles were predicted via numerical calculation. The spherical distribution of phase retardation without defects could be exhibited by applying a relatively high voltage with short switching on and switching off.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Koide, N.: The Liquid Crystal Display Story. Springer, Berlin (2014)

    Book  Google Scholar 

  2. Sheridan, J.P., Giallorenzi, T.G.: Electro-optically induced deflection in liquid-crystal waveguides. J. Appl. Phys. 45(12), 5160–5163 (1974). https://doi.org/10.1063/1.1663210

    Article  ADS  Google Scholar 

  3. Fray, A.F., Jones, D.: Large-angle beam deflector using liquid crystals. Electron. Lett. 11(16), 1 (1975). https://doi.org/10.1049/el:19750273

    Article  Google Scholar 

  4. Sato, S., Kikuchi, A.: Light deflection by nematic liquid-crystal cells. Oyobuturi 45(10), 938–942 (1976). https://doi.org/10.11470/oubutsu1932.45.938

    Article  Google Scholar 

  5. Sato, S.: Liquid-crystal lens-cells with variable focal length. Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979). https://doi.org/10.1143/jjap.18.1679

    Article  ADS  Google Scholar 

  6. Sato, S., Sugiyama, A., Sato, R.: Variable-focus liquid-crystal Fresnel lens. Jpn. J. Appl. Phys. 24(8), L626–L628 (1985). https://doi.org/10.1143/jjap.24.l626

    Article  ADS  Google Scholar 

  7. Wang, B., Ye, M., Honma, M., Nose, T., Sato, S.: Liquid crystal lens with spherical electrode. Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002). https://doi.org/10.1143/jjap.41.L1232

    Article  ADS  Google Scholar 

  8. Ye, M., Sato, S.: Optical properties of liquid crystal lens of any size. Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002). https://doi.org/10.1143/jjap.41.L571

    Article  ADS  Google Scholar 

  9. Ye, M., Sato, S.: Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations. Jpn. J. Appl. Phys. 42(Part 1, No. 10), 6439–6440 (2003). https://doi.org/10.1143/jjap.42.6439

    Article  ADS  Google Scholar 

  10. Ye, M., Wang, B., Sato, S.: Driving of liquid crystal lens without disclination occurring by applying in-plane electric field. Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5086–5089 (2003). https://doi.org/10.1143/jjap.42.5086

    Article  ADS  Google Scholar 

  11. Presnyakov, V.V., Galstian, T.V.: Electrically tunable polymer stabilized liquid-crystal lens. J. Appl. Phys. 97(10), 1 (2005). https://doi.org/10.1063/1.1896436

    Article  Google Scholar 

  12. Wang, B., Ye, M., Sato, S.: Liquid crystal negative lens. Jpn. J. Appl. Phys. 44(7a), 4979–4983 (2005). https://doi.org/10.1143/Jjap.44.4979

    Article  ADS  Google Scholar 

  13. Lee, C.R., Lo, K.C., Mo, T.S.: Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern. Jpn. J. Appl. Phys. 46(7a), 4144–4147 (2007). https://doi.org/10.1143/Jjap.46.4144

    Article  ADS  Google Scholar 

  14. Ye, M., Wang, B., Yamaguchi, M., Sato, S.: Reducing driving voltages for liquid crystal lens using weakly conductive thin film. Jpn. J. Appl. Phys. 47(6 PART 1), 4597–4599 (2008). https://doi.org/10.1143/JJAP.47.4597

    Article  ADS  Google Scholar 

  15. Ye, M., Wang, B., Uchida, M., Yanase, S., Takahashi, S., Yamaguchi, M., Sato, S.: Low-voltage-driving liquid crystal lens. Jpn. J. Appl. Phys. 49(10), 1002041–1002043 (2010). https://doi.org/10.1143/JJAP.49.100204

    Article  Google Scholar 

  16. Yu, H., Zhou, G., Leung, H.M., Chau, F.S.: Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation. Opt. Express 18(10), 9945–9954 (2010). https://doi.org/10.1364/OE.18.009945

    Article  ADS  Google Scholar 

  17. Lin, H.-C., Lin, Y.-H.: An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens. Appl. Phys. Lett. 98(8), 1 (2011). https://doi.org/10.1063/1.3559622

    Article  Google Scholar 

  18. Galstian, T., Asatryan, K., Presniakov, V., Zohrabyan, A., Tork, A., Bagramyan, A., Careau, S., Thiboutot, M., Cotovanu, M.: High optical quality electrically variable liquid crystal lens using an additional floating electrode. Opt. Lett. 41(14), 3265–3268 (2016). https://doi.org/10.1364/OL.41.003265

    Article  ADS  Google Scholar 

  19. Hsu, Y.H., Chen, B.Y., Sheu, C.R.: Improvement of hole-patterned electrode liquid crystal lens by coplanar inner ring electrode. IEEE Photonics Tech. Lett. 31(20), 1627–1630 (2019). https://doi.org/10.1109/lpt.2019.2939268

    Article  ADS  Google Scholar 

  20. Nose, T., Sato, S.: A liquid crystal microlens obtained with a non-uniform electric field. Liq. Cryst. 5(5), 1425–1433 (1989). https://doi.org/10.1080/02678298908027780

    Article  Google Scholar 

  21. Nose, T., Masuda, S., Sato, S.: Optical properties of a hybrid-aligned liquid crystal microlens. Mol. Cryst. Liq. Cryst. 199(1), 27–35 (1991). https://doi.org/10.1080/00268949108030914

    Article  Google Scholar 

  22. Ye, M., Hayasaka, S., Sato, S.: Liquid crystal lens array with hexagonal-hole-patterned electrodes. Jpn. J. Appl. Phys. 43(9 A), 6108–6111 (2004). https://doi.org/10.1143/JJAP.43.6108

    Article  ADS  Google Scholar 

  23. Choi, Y., Kim, Y.-T., Lee, S.-D., Kim, J.-H.: Polarization independent static microlens array in the homeotropic liquid crystal configuration. Mol. Cryst. Liq. Cryst. 433(1), 191–197 (2005). https://doi.org/10.1080/15421400590954957

    Article  Google Scholar 

  24. Zhao, X., Liu, C., Zhang, D., Luo, Y.: Tunable liquid crystal microlens array using hole patterned electrode structure with ultrathin glass slab. Appl. Opt. 51(15), 3024–3030 (2012). https://doi.org/10.1364/AO.51.003024

    Article  Google Scholar 

  25. Chu, F., Dou, H., Li, G.-P., Song, Y.-L., Li, L., Wang, Q.-H.: A polarisation-independent blue-phase liquid crystal lens array using gradient electrodes. Liq. Cryst. 45(5), 715–720 (2018). https://doi.org/10.1080/02678292.2017.1376127

    Article  Google Scholar 

  26. Li, R., Chu, F., Dou, H., Tian, L.-L., Hou, W.-Y., Li, L., Wang, Q.-H.: A blue-phase liquid crystal lens array based on dual square ring-patterned electrodes. Liq. Cryst. 46(8), 1266–1272 (2019). https://doi.org/10.1080/02678292.2018.1549284

    Article  Google Scholar 

  27. Li, Z., Lu, H., Ding, Y., Xu, M.: Low voltage liquid crystal microlens array based on polyvinyl alcohol convex induced vertical alignment. Liq. Cryst. (2020). https://doi.org/10.1080/02678292.2020.1773554

    Article  Google Scholar 

  28. Ye, M., Wang, B., Kawamura, M., Sato, S.: Image formation using liquid crystal lens. Jpn. J. Appl. Phys. 46(10 A), 6776–6777 (2007). https://doi.org/10.1143/JJAP.46.6776

    Article  ADS  Google Scholar 

  29. Ye, M., Wang, B., Yanase, S., Sato, S.: Variable-focus liquid crystal lenses used in imaging systems as focusing elements. IEICE Trans. Electron. E91C(10), 1599–1603 (2008). https://doi.org/10.1093/ietele/e91-c.10.1599

    Article  ADS  Google Scholar 

  30. Kawamura, M., Toshima, K.: Shape measurements by using a liquid crystal lens. Mol. Cryst. Liq. Cryst. 542(1), 190/[712]-195/[717] (2011). https://doi.org/10.1080/15421406.2011.570575

    Article  Google Scholar 

  31. Kawamura, M., Yumoto, E., Ishikuro, S.: Three-dimensional imaging system by using a liquid crystal lens. IEEE Xplore (2012). https://doi.org/10.1109/ISOT.2012.6403232

    Article  Google Scholar 

  32. Hassanfiroozi, A., Huang, Y.P., Javidi, B., Shieh, H.P.: Dual layer electrode liquid crystal lens for 2D/3D tunable endoscopy imaging system. Opt. Express 24(8), 8527–8538 (2016). https://doi.org/10.1364/OE.24.008527

    Article  ADS  Google Scholar 

  33. Kawamura, M., Ye, M., Sato, S.: Optical particle manipulation using an LC device with eight-divided circularly hole-patterned electrodes. Opt. Express 16(14), 10059–10065 (2008). https://doi.org/10.1364/oe.16.010059

    Article  ADS  Google Scholar 

  34. Ye, M., Noguchi, M., Wang, B., Sato, S.: Zoom lens system without moving elements realised using liquid crystal lenses. Electron. Lett. 45(12), 1 (2009). https://doi.org/10.1049/el.2009.0840

    Article  Google Scholar 

  35. Hirai, H., Shimizu, S., Saito, T., Kurihara, H., Kawamura, M., Sato, S.: Development of nonmechanical zoom lens system using liquid crystal. In: IECON proceedings (industrial electronics conference), pp. 5370–5375 (2019)

  36. Kawamura, M., Sato, S., Sato, S.: Electrically tunable liquid-crystal optical and imaging devices operating in the infrared wavelength range of 10 μm band. Jpn. J. Appl. Phys. 58(8), 1 (2019). https://doi.org/10.7567/1347-4065/ab2c2e

    Article  Google Scholar 

  37. Gennes, P.G.D., Prost, J.: The Physics of Liquid Crystals, vol. 2. Oxford science publications, Oxford (1993)

    Google Scholar 

  38. Chandrasekhar, S.: Liquid Crystals. Cambridge University Press (2010)

  39. Whiteley, J.: Finite Element Methods. Mathematical Engineering. Springer, Berlin (2017)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Satoru Yoshimura for technical advice with the thin film fabrication. We also thank Prof. Susumu Sato for lending his expertise on the fundamental theory of liquid crystal lenses. This work was partially supported by Grant-in-Aid for Scientific Research (C) JSPS KAKENHI Grant Number 17K06368 and 20K04591.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marenori Kawamura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawamura, M., Rasidi, M.R.N.B. & Ichimura, Y. Driving liquid crystal lens without LC molecular orientation defects induced by an electric field. Opt Rev 28, 295–303 (2021). https://doi.org/10.1007/s10043-021-00661-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-021-00661-9

Keywords

Navigation