Skip to main content
Log in

Dual coaxial lens system for depth reconstruction

  • Special section: Regular Paper
  • The 11th International Conference on Optics-Photonics Design & Fabrication (ODF’18), Hiroshima, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Depth information can be acquired using two different projection images, namely, an orthogonal projection image and a perspective projection image. A dual-lens optical system is able to simultaneously take these projection images in a coaxial frame. The dual-lens optical system consists of a telecentric lens, an entocentric lens, and a dichroic mirror, which can acquire the different projection images separated by color. The dual-lens optical system is shown to be more compact by means of two coaxial band-pass filters. The different projection images separated by color are radially deviated from each other where object features at each depth on the perspective projection image are similar transformation of those on the orthogonal projection image. This means that matching of the object features for depth reconstruction is needed to be performed only in a radial direction with the similarity transformation. Using such constraint, the optical system is validated by an experiment, showing that the proposed optical system can be used for depth reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bass, M., DeCusatis, C., Enoch, J., Lakshminarayanan, V., Li, G., Macdonald, C., Mahajan, V., Van Stryland, E.: Handbook of optics. McGraw-Hill, New York City (2010)

    Google Scholar 

  2. Adelson, E.H., Bergen, J.R.: Computational models of visual processing. MIT, Cambridge (1991)

    Google Scholar 

  3. Park, J.H., Hong, K., Lee, B.: Recent progress in three-dimensional information processing based on integral imaging. Appl Opt 48(34), H77–H94 (2009)

    Article  ADS  Google Scholar 

  4. Ding, X., Xu, L., Wang, H., Wang, X., Lv, G.: Stereo depth estimation under different camera calibration and alignment errors. Appl Opt 50, 1289–1301 (2011)

    Article  ADS  Google Scholar 

  5. Wolff, L.B., Angelopoulou, E.: Three-dimensional stereo by photometric ratios. J Opt Soc Am A 11, 3069–3078 (1994)

    Article  ADS  Google Scholar 

  6. Arimoto, H., Javidi, B.: Integral three-dimensional imaging with digital reconstruction. Opt Lett 26, 157–159 (2001)

    Article  ADS  Google Scholar 

  7. Yoo, H.: Axially moving a lenslet array for high-resolution 3D images in computational integral imaging. Opt Express 21, 8873–8878 (2013)

    Article  ADS  Google Scholar 

  8. Cai, Z., Liu, X., Peng, X., Gao, B.Z.: Ray calibration and phase mapping for structured-light-field 3D reconstruction. Opt Express 26, 7598–7613 (2018)

    Article  ADS  Google Scholar 

  9. Huang, X., Bai, J., Wang, K., Liu, Q., Luo, Y., Yang, K., Zhang, X.: Target enhanced 3D reconstruction based on polarization-coded structured light. Opt Express 25, 1173–1184 (2017)

    Article  ADS  Google Scholar 

  10. Bell, T., Zhang, S.: Multiwavelength depth encoding method for 3D range geometry compression. Appl Opt 54, 10684–10691 (2015)

    Article  ADS  Google Scholar 

  11. Hwang, D.C., Shin, D.H., Kim, S.C., Kim, E.S.: Depth extraction of three-dimensional objects in space by the computational integral imaging reconstruction technique. Appl Opt 47, D128–D135 (2008)

    Article  Google Scholar 

  12. De, M., Lit, J.W.Y., Tremblay, R.: Multiaperture focusing technique. Appl Opt 7, 483–488 (1968)

    Article  ADS  Google Scholar 

  13. Bando, Y., Chen, B., Nishita, T.: Extracting depth and matte using a color-filtered aperture. ACM Trans Graphics 27(5), 134 (2008)

    Article  Google Scholar 

  14. Kim, J.S., Kanade, T.: Multiaperture telecentric lens for 3D reconstruction. Opt Lett 36, 7 (2011)

    Article  Google Scholar 

  15. Ohno, H., Kano, H.: Depth reconstruction with coaxial multi-wavelength aperture telecentric optical system. Opt Express 26, 25880–25891 (2018)

    Article  ADS  Google Scholar 

  16. Geng, Y., Zhao, Y., Chen, H.: Stereo matching based on adaptive support-weight approach in RGB vector space. Appl Opt 51, 3538–3545 (2012)

    Article  ADS  Google Scholar 

  17. Bradski, G., Kaehler, A.: Learning OpenCV: computer vision with the OpenCV library. O’Reilly Media, Newton (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroya Kano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohno, H., Kano, H. Dual coaxial lens system for depth reconstruction. Opt Rev 26, 500–506 (2019). https://doi.org/10.1007/s10043-019-00540-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-019-00540-4

Keywords

Navigation