Skip to main content
Log in

Phase retrieval for off-axis digital holography using multiplexing with hologram rotation and complex encoding

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

An efficient method of reconstructing the phase distribution for off-axis digital holography is proposed using hologram multiplexing with hologram rotation and complex encoding. A first hologram and a second 180° rotated hologram from a hologram sequence are first assembled into a synthetic hologram using the complex encoding method. Then, digital reconstruction processes, including Fourier transformation and band-pass filtering, are performed on both holograms together. Results including phase distributions and carrier information of the two holograms are obtained. Through a division operation, carrier can be removed without redundant operations, fitting procedures, or prior knowledge of the system. Our simulations and experiments demonstrate the feasibility and validity of the method. The results obtained show an accurate phase reconstruction with an improved processing speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. He, X., Nguyen, C.V., Pratap, M., Zheng, Y., Wang, Y., Nisbet, D.R., Williams, R.J., Rug, M., Maier, A.G., Lee, W.M.: Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy. Biomed. Opt. Express 7, 3111–3123 (2016)

    Article  Google Scholar 

  2. Trusiak, M., Mico, V., Garcia, J., Patorski, K.: Quantitative phase imaging by single-shot Hilbert–Huang phase microscopy. Opt. Lett. 41, 4344–4347 (2016)

    Article  ADS  Google Scholar 

  3. Zhao, D., Xie, D., Yang, Y., Zhai, H.: Iterative approach for zero-order term elimination in off-axis multiplex digital holography. Opt. Commun. 283, 513–517 (2017)

    Article  ADS  Google Scholar 

  4. Trujillo, C., Castañeda, R., Piedrahita-Quintero, P., Garcia-Sucerquia, J.: Automatic full compensation of quantitative phase imaging in off-axis digital holographic microscopy. Appl. Opt. 55, 10299–10306 (2016)

    Article  ADS  Google Scholar 

  5. Takeda, M., Ina, H., Kobayashi, S.: Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156–160 (1982)

    Article  ADS  Google Scholar 

  6. Bone, D.J., Bachor, H.A., Sandeman, R.J.: Fringe-pattern analysis using a 2-D Fourier transform. Appl. Opt. 25, 1653–1660 (1986)

    Article  ADS  Google Scholar 

  7. Gu, J., Chen, F.: Fast Fourier transform, iteration, and least-squares fit demodulation image processing for analysis of single-carrier fringe pattern. J. Opt. Soc. Am. A 12, 2159–2164 (1995)

    Article  ADS  Google Scholar 

  8. Zhang, Q., Wu, Z.: A carrier removal method in Fourier transform profilometry with Zernike polynomials. Opt. Lasers Eng. 51, 253–260 (2013)

    Article  ADS  Google Scholar 

  9. Fan, Q., Yang, H., Li, G., Zhao, J.: Suppressing carrier removal error in the Fourier transform method for interferogram analysis. J. Opt. 12, 115401 (2010)

    Article  ADS  Google Scholar 

  10. Du, Y., Feng, G., Li, H., Zhou, S.: Accurate carrier-removal technique based on zero padding in Fourier transform method for carrier interferogram analysis. Optik 125, 1056–1061 (2014)

    Article  ADS  Google Scholar 

  11. Singh, M., Khare, K.: Accurate efficient carrier estimation for single-shot digital holographic imaging. Opt. Lett. 41, 4871–4874 (2016)

    Article  ADS  Google Scholar 

  12. Fernández, A., Kaufmann, G.H., Doval, Á.F., Blanco-García, J., Fernández, J.L.: Comparison of carrier removal methods in the analysis of TV holography fringes by the Fourier transform method. Opt. Eng. 37, 2899–2905 (1998)

    Article  ADS  Google Scholar 

  13. Pham, H.V., Edwards, C., Goddard, L.L., Popescu, G.: Fast phase reconstruction in white light diffraction phase microscopy. Appl. Opt. 52, A97–A101 (2013)

    Article  ADS  Google Scholar 

  14. Girshovitz, P., Shaked, N.T.: Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing. Opt. Lett. 39, 2262–2265 (2014)

    Article  ADS  Google Scholar 

  15. Girshovitz, P., Shaked, N.T.: Fast phase processing in off-axis holography using multiplexing with complex encoding and live-cell fluctuation map calculation in real-time. Opt. Express 23, 8773–8787 (2015)

    Article  ADS  Google Scholar 

  16. Zhong, Z., Bai, H., Shan, M., Zhang, Y., Guo, L.: Fast phase retrieval in slightly off-axis digital holography. Opt. Lasers Eng. 97, 9–18 (2017)

    Article  Google Scholar 

  17. Deng, D., Qu, W., He, W., Wu, Y., Liu, X., Peng, X.: Off-axis tilt compensation in common-path digital holographic microscopy based on hologram rotation. Opt. Lett. 42, 5282–5285 (2017)

    Article  ADS  Google Scholar 

  18. Liu, S., Lian, Q., Xu, Z.: Phase aberration compensation for digital holographic microscopy based on double fitting and background segmentation. Opt. Lasers Eng. 115, 238–242 (2019)

    Article  Google Scholar 

  19. He, W., Liu, Z., Yang, Z., Dou, J., Liu, X., Zhang, Y., Liu, Z.: Robust phase aberration compensation in digital holographic microscopy by self-extension of holograms. Opt. Commun. 445, 69–75 (2019)

    Article  ADS  Google Scholar 

  20. Girshovitz, P., Shaked, N.T.: Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy. Opt. Express 21, 5701–5714 (2013)

    Article  ADS  Google Scholar 

  21. Bai, H., Zhong, Z., Shan, M., Liu, L., Zhang, Y., Guo, L.: Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer. Opt. Lasers Eng. 90, 155–160 (2017)

    Article  Google Scholar 

  22. Ghiglia, D.C., Romero, L.A.: Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J. Opt. Soc. Am. A 11, 107–117 (1994)

    Article  ADS  Google Scholar 

  23. Pham, H., Ding, H., Sobh, N., Do, M., Patel, S., Popescu, G.: Off-axis quantitative phase imaging processing using CUDA: toward real-time applications. Biomed. Opt. Express 2, 1781–1793 (2011)

    Article  Google Scholar 

  24. Backoach, O., Kariv, S., Girshovitz, P., Shaked, N.T.: Fast phase processing in off-axis holography by CUDA including parallel phase unwrapping. Opt. Express 24, 3177–3188 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61601174), National Defense Fundamental Research Program, Science Foundation of Heilongjiang Province of China (F2018026), Fundamental Research Funds for the Heilongjiang Provincial Universities (KJCXZD201703), and University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2018012). The authors would also like to thank Prof. Mingguang Shan and associate Prof. Zhi Zhong from Harbin Engineering University for providing the phase plate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziheng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 3746 kb)

Supplementary material 2 (AVI 1445 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, H., Min, R. & Yang, Z. Phase retrieval for off-axis digital holography using multiplexing with hologram rotation and complex encoding. Opt Rev 26, 549–560 (2019). https://doi.org/10.1007/s10043-019-00525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-019-00525-3

Keywords

Navigation