Skip to main content
Log in

FPGA-based photon-counting phase-modulation fluorometer and a brief comparison with that operated in a pulsed-excitation mode

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We have constructed a high-efficiency, photon-counting phase-modulation fluorometer (PC-PMF) using a field-programmable gate array, which is a modified version of the photon-counting fluorometer (PCF) that works in a pulsed-excitation mode (Iwata and Mizuno in Meas Sci Technol 28:075501, 2017). The common working principle for both is the simultaneous detection of the photoelectron pulse train, which covers 64 ns with a 1.0-ns resolution time (1.0 ns/channel). The signal-gathering efficiency was improved more than 100 times over that of conventional time-correlated single-photon-counting at the expense of resolution time depending on the number of channels. The system dead time for building a histogram was eliminated, markedly shortening the measurement time for fluorescent samples with moderately high quantum yields. We describe the PC-PMF and make a brief comparison with the pulsed-excitation PCF in precision, demonstrating the potential advantage of PC-PMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For, example, a multichannel-TAC NAES-500/550 system had been manufactured by HORIBA Ltd. (Kyoto, Japan) from 1982 to 2000.

References

  1. Mizuno, T., Nakao, S., Mizutani, Y., Iwata, T.: Photon-counting 1.0 GHz-phase-modulation fluorometer. Rev. Sci. Instrum. 86, 043110 (2015)

    Article  ADS  Google Scholar 

  2. Iwata, T., Mizuno, T.: High-speed, FPGA-based photon-counting fluorometer with high data-gathering efficiency. Meas. Sci. Technol. 28, 075501 (2017)

    Article  ADS  Google Scholar 

  3. O’Connor, D.V., Phillips, D.: Time-Correlated Single Photon Counting. Academic, New York (1984)

    Google Scholar 

  4. Hirvonen, L.M., Suhling, K.: Wide-field TCSPC: methods and applications. Meas. Sci. Technol. 28, 012003 (2017)

    Article  ADS  Google Scholar 

  5. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn. Springer, New York (2006)

    Book  Google Scholar 

  6. Suhling, K., McLoskey, D., Birch, D.J.S.: Multiplexed single-photon counting. I. A time-correlated fluorescence lifetime camera. Rev. Sci. Instrum. 67, 2238 (1996)

    Article  ADS  Google Scholar 

  7. Antonioli, S., Miari, L., Cuccato, A., Crotti, M., Rech, I., Ghioni, M.: 8-Channel acquisition system for time-correlated single-photon counting. Rev. Sci. Instrum. 84, 064705 (2016)

    Article  ADS  Google Scholar 

  8. Colyer, R.A., Lee, C., Gratton, E.: A novel fluorescence lifetime imaging system that optimizes photon efficiency. Micros. Res. Tech. 71, 201–213 (2008)

    Article  Google Scholar 

  9. Wahl, M., Rahn, H.J., Gregor, I., Erdmann, R., Enderlein, J.: Dead-time optimized time-correlated photon counting instrument with synchronized, independent timing channels. Rev. Sci. Instrum. 78, 0331066 (2007)

    Article  Google Scholar 

  10. Krstajić, N., Levitt, J., Poland, S., Ameer-Beg, S., Henderson, R.: 256×2 SPAD line sensor for time resolved fluorescence spectroscopy. Opt. Express. 23, 5653–5669 (2015)

    Article  ADS  Google Scholar 

  11. Arlt, J., Tyndall, D., Rae, B.R., Li, D.D., Richardson, J.A., Henderson, R.K.: A study of pile-up in integrated time-correlated single photon counting systems. Rev. Sci. Instrum. 84, 103105 (2013)

    Article  ADS  Google Scholar 

  12. Iwata, T., Uchida, T., Minami, S.: A nanosecond photon-counting fluorimetric system using a modified multichannel vernier chronotron. Appl. Spectrosc. 39, 101–109 (1985)

    Article  ADS  Google Scholar 

  13. Lawton, M., Bolden, R.C., Shaw, M.J.: A 10 ns multichannel photon counter. J. Phys. E Sci. Instrum. 9, 686–690 (1976)

    Article  ADS  Google Scholar 

  14. Kleinefeld, T., Ziegler, H.: A multichannel photon counter with a time resolution of 2.5 ns. J. Phys. E: Sci. Instrum. 15, 888–890 (1982)

    Article  ADS  Google Scholar 

  15. Wang, X.F., Kitajima, S., Uchida, T., Coleman, D.M., Minami, S.: Time-resolved fluorescence microscopy using multichannel photon counting. Appl. Spectrosc. 44, 25–30 (1990)

    Article  ADS  Google Scholar 

  16. Becker, W.: Advanced Time-Correlated Single Photon Counting Techniques. Springer, Berlin (2005)

    Book  Google Scholar 

  17. Cuccato, A., Antonioli, S., Crotti, M., Labanca, I., Gulinatti, A., Rech, I., Ghioni, M.: Complete and compact 32-channel system for time-correlated single-photon counting measurements. IEEE Photon. J. 5, 6801514 (2013)

    Article  Google Scholar 

  18. Iwata, T., Hori, A., Kamada, T.: Photon-counting phase-modulation fluorometer. Opt. Rev. 8, 326–330 (2001)

    Article  Google Scholar 

  19. Mizuno, T., Mizutani, Y., Iwata, T.: Phase-modulation fluorometer using a phase-modulated excitation light source. Opt. Rev. 19, 222–227 (2012)

    Article  Google Scholar 

  20. Madge, D., Wong, R., Seybold, P.G.: Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem. Photobiol. 75, 324–327 (2002)

    Google Scholar 

  21. Dahiya, P., Kumbhakar, M., Mukherjee, T., Pal, H.: Effect of protic solvents on twisted intramolecular charge transfer state formation in coumarin-152 and coumarin-481 dyes. Chem. Phys. Lett. 414, 148–154 (2005)

    Article  ADS  Google Scholar 

  22. Iwata, T.: Proposal for Fourier-transform phase-modulation fluorometer. Opt. Rev. 10, 31–37 (2003)

    Article  Google Scholar 

  23. Iwata, T., Shibata, H., Araki, T.: Construction of a Fourier-transform phase-modulation fluorometer. Meas. Sci. Technol. 16, 2351–2356 (2005)

    Article  ADS  Google Scholar 

  24. Iwata, T., Muneshige, A., Araki, T.: Analysis of data obtained from a frequency-multiplexed phase-modulation fluorometer using an autoregressive model. Appl. Spectrosc. 61, 950–955 (2007)

    Article  ADS  Google Scholar 

  25. Altera. Stratix V Device Handbook vol 2 Transceivers (San Jose, CA: Altera). http://www.altera.com/en_US/pdfs/literature/hb/stratix-v/stx5_xcvr.pdf (2016). Accessed 27 Jan 2017

  26. Iwata, T., Senda, M., Kurosu, Y., Tsuji, A., Maeda, M.: Construction of time-resolved fluorescence detector for amino compounds after high performance liquid chromatography using europium chelate. Anal. Chem. 69, 1861–1865 (1997)

    Article  Google Scholar 

  27. Iwata, T., Koshoubu, J., Kurosu, Y., Araki, T.: Time-resolved high-performance liquid chromatography fluorescence detector using a nanosecond pulsed light source for detecting lanthanide-chelated compound. J. Chromatogr. A. 859, 13–21 (1999)

    Article  Google Scholar 

  28. Mizuno, T., Iwata, T.: Hadamard-transform fluorescence-lifetime imaging. Opt. Express. 24, 8202–8213 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Iwata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwata, T., Taga, T. & Mizuno, T. FPGA-based photon-counting phase-modulation fluorometer and a brief comparison with that operated in a pulsed-excitation mode. Opt Rev 25, 94–101 (2018). https://doi.org/10.1007/s10043-017-0401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-017-0401-4

Keywords

Navigation