Skip to main content
Log in

Analysis of bias thermal stability of interferometer fiber-optic gyroscope using a solid-core polarization-maintaining photonic crystal fiber

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Bias thermal stability of a fiber-optic gyroscope using polarization-maintaining photonic crystal (PM-PCF) was studied. The thermal sensitivity of birefringence in PM-PCF and polarization cross talking in fiber coil was measured. Using an OCDP method, the polarization cross talking causing phase error of the fiber-optic gyroscope (FOG) was analyzed. The contrast experiment result of the FOGs with the PM-PCF coil and PMF coil showed that using PM-PCF instead of PMF can improve the FOG’s bias thermal stability by about 50 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barbour, N., Schmidt, G.: Inertial sensor technology trends. IEEE Sens. J. 1(4), 332–339 (2001)

    Article  Google Scholar 

  2. Frigo, N.J.: Compensation of linear sources of nonreciprocity in Sagnac interferometers. In: Proc. SPIE—Fiber Optic Laser Sensors, vol. 412, pp. 268–271 (1983)

  3. Kato, H., Saito, H., Sakai, S.-i.: Shupe effect compensation of temperature controlled fiber optical gyroscope. In: The 11th IEEE International Workshop on Advanced Motion Control, March 21–24, Nagaoka, Japan (2010)

  4. Blin, S., Kim, H.K.: Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber. J. Lightw. Technol. 25(3), 861–865 (2007)

    Article  ADS  Google Scholar 

  5. Dangui, V., Kim, H.K., Digonnet, M.J.F., Kino, G.S.: Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers. Opt. Express 13(18), 6669–6684 (2005)

    Article  ADS  Google Scholar 

  6. Hollow Core Fibers for Fiber Optic Gyroscopes. NKT Photonics White Paper V1.0 October 2009

  7. Pavlath, G.A., Show, H.J.: Birefringence and polarization effects in fiber gyroscope. Appl. Opt. 2(10), 1752–1757 (1982)

    Article  ADS  Google Scholar 

  8. Zuoming, S., Ningfang, S., Pan, M., Jingming, S., Jing, J: Low loss fusion splicing polarization-maintaining photonic crystal fiber and conventional polarization-maintaining fiber. Opt. Fiber Technol. 18(6), 452–456 (2012)

  9. Martin, P., Le Boudec, G., Lefevre, H.C.: Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry. Proc. SPIE 1585, 173–179 (1991)

    Article  ADS  Google Scholar 

  10. Lefevre, H.C.: The fiber-optic gyroscope. Artech House 55–60 (1993)

  11. Tianhua, X., Feng, T., Wencai, J., et al.: Influence of polarization extinction ratio on distributed polarization coupling detection. Optoelectron. Lett. 4(1), 0292–0294 (2008)

    Google Scholar 

  12. Tsubokawa, M., Higashi, T., et al.: Measurement of mode couplings and extinction ratios in polarization-maintaining fibers. J. Lightw. Technol. 7(1), 45–50 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Zuoming.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuoming, S., Shuhua, W., Junwei, L. et al. Analysis of bias thermal stability of interferometer fiber-optic gyroscope using a solid-core polarization-maintaining photonic crystal fiber. Opt Rev 23, 968–975 (2016). https://doi.org/10.1007/s10043-016-0280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0280-0

Keywords

Navigation