Skip to main content
Log in

Improving signal-to-noise ratio performance of compressive imaging based on spatial correlation

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, compressive imaging based on spatial correlation (CISC), which uses second-order correlation with the measurement matrix, is introduced to improve the signal-to-noise ratio performance of compressive imaging (CI). Numerical simulations and experiments are performed as well. Referred to the results, it can be seen that CISC performs much better than CI in three common noise environments. This provides the great opportunity to pave the way for real applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Donoho, D.L.: Compressed sensing. Inf. Theory IEEE Trans. 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182–1195 (2007)

    Article  Google Scholar 

  3. Eldar, Y.C., Kutyniok, G.: Compressed sensing: theory and applications. Cambridge University Press, New York (2012)

    Book  Google Scholar 

  4. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. Sig. Process. Mag. IEEE 25, 72–82 (2008)

    Article  ADS  Google Scholar 

  5. Shi, G., Liu, D., Gao, D., Liu, Z., Lin, J., Wang, L.: Advances in theory and application of compressed sensing. Acta Electronica Sinica 37, 1070–1081 (2009)

    Google Scholar 

  6. Duarte, M.F., Eldar, Y.C.: Structured compressed sensing: from theory to applications. Signal Process. IEEE Trans. 59, 4053–4085 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.E., Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25, 83 (2008)

    Article  ADS  Google Scholar 

  8. Katz, O., Bromberg, Y., Silberberg, Y.: Compressive ghost imaging. Appl. Phys. Lett. 95, 131110 (2009)

    Article  ADS  Google Scholar 

  9. Zhao, C., Gong, W., Chen, M., Li, E., Wang, H., Xu, W., Han, S.: Ghost imaging lidar via sparsity constraints. Appl. Phys. Lett. 101, 141123 (2012)

    Article  ADS  Google Scholar 

  10. Gong, W., Bo, Z., Li, E., Han, S.: Experimental investigation of the quality of ghost imaging via sparsity constraints. Appl. Opt. 52, 3510–3515 (2013)

    Article  ADS  Google Scholar 

  11. Yu, W., Li, M., Yao, X., Liu, X., Wu, L., Zhai, G.: Adaptive compressive ghost imaging based on wavelet trees and sparse representation. Opt. Express 22, 7133–7144 (2014)

    Article  ADS  Google Scholar 

  12. Katkovnik, V., Astola, J.: Compressive sensing computational ghost imaging. JOSA A 29, 1556–1567 (2012)

    Article  ADS  Google Scholar 

  13. Willett, R.M., Marcia, R.F., Nichols, J.M.: Compressed sensing for practical optical imaging systems: a tutorial. Opt. Eng. 50, 072601–072601-13 (2011)

    Article  ADS  Google Scholar 

  14. Candes, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Prob. 23, 969 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Akhlaghi, M.I., Dogariu, A.: Compressive correlation imaging with random illumination[J]. Opt. Lett. 40(19), 4464–4467 (2015)

    Article  ADS  Google Scholar 

  16. Gong, W.: High-resolution pseudo-inverse ghost imaging[J]. Photon. Res. 3(5), 234–237 (2015)

    Article  Google Scholar 

  17. Zhang, C., Guo, S., Cao, J., et al.: Object reconstitution using pseudo-inverse for ghost imaging[J]. Opt. Express 22(24), 30063–30073 (2014)

    Article  ADS  Google Scholar 

  18. Mandel, L., Wolf, E.: Optical coherence and quantum optics. Cambridge University Press, New York (1995)

    Book  Google Scholar 

  19. Kutyniok, G.: Theory and applications of compressed sensing. arXiv preprint arXiv:1203.3815 (2012)

  20. Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. Select. Topics Signal Process. IEEE J. 1, 586–597 (2007)

    Article  ADS  Google Scholar 

  21. Li, C., Yin, W., Zhang, Y.: User’s guide for TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms. CAAM report (2009)

  22. http://www.caam.rice.edu/~optimization/L1/TVAL3/. Accessed 07 Nov 2013

  23. Dudley, D., Duncan, W.M., Slaughter, J.: Emerging digital micromirror device (DMD) applications. In: Micromachining and Microfabrication, pp. 14–25 (2003)

Download references

Acknowledgments

The authors gratefully acknowledge the support from the Seventh Six-talent Peak project of Jiangsu Province (Grant Nos. 2014-DZXX-007), the National Natural Science Foundation of China (Grant Nos. 61271332), the Fundamental Research Funds for the Central Universities (Grant Nos. 30920140112012), the Innovation Fund Project for Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education (Grant Nos. JYB201509), and the Fund Project for Low-light-level Night Vision Laboratory (Grant Nos. J20130501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Chen.

Appendix 1

Appendix 1

In this second-order correlation function, the product of sensing matrix \(\varPhi\) shown in Eq. (4) and its transpose \(\varPhi^{T}\) is expressed as:

$$\begin{aligned} \varOmega = \varPhi \varPhi^{T} = \left[ {\begin{array}{*{20}c} {\text{cov} \left( {a\left( 1 \right),a\left( 1 \right)} \right)} & {\text{cov} \left( {a\left( 1 \right),a\left( 2 \right)} \right)} & \cdots & {\text{cov} \left( {a\left( 1 \right),a\left( N \right)} \right)} \\ {\text{cov} \left( {a\left( 2 \right),a\left( 1 \right)} \right)} & {\text{cov} \left( {a\left( 2 \right),a\left( 2 \right)} \right)} & \cdots & {\text{cov} \left( {a\left( 2 \right),a\left( N \right)} \right)} \\ \cdots & \cdots & \cdots & \cdots \\ {\text{cov} \left( {a\left( N \right),a\left( 1 \right)} \right)} & {\text{cov} \left( {a\left( N \right),a\left( 2 \right)} \right)} & \cdots & {\text{cov} \left( {a\left( N \right),a\left( N \right)} \right)} \\ \end{array} } \right] \times \left[ {\begin{array}{*{20}c} {\text{cov} \left( {a\left( 1 \right),a\left( 1 \right)} \right)} & {\text{cov} \left( {a\left( 2 \right),a\left( 1 \right)} \right)} & \cdots & {\text{cov} \left( {a\left( N \right),a\left( 1 \right)} \right)} \\ {\text{cov} \left( {a\left( 1 \right),a\left( 2 \right)} \right)} & {\text{cov} \left( {a\left( 2 \right),a\left( 2 \right)} \right)} & \cdots & {\text{cov} \left( {a\left( N \right),a\left( 2 \right)} \right)} \\ \cdots & \cdots & \cdots & \cdots \\ {\text{cov} \left( {a\left( 1 \right),a\left( N \right)} \right)} & {\text{cov} \left( {a\left( 2 \right),a\left( N \right)} \right)} & \cdots & {\text{cov} \left( {a\left( N \right),a\left( N \right)} \right)} \\ \end{array} } \right] \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\; = \left[ {\begin{array}{*{20}c} {\sum\nolimits_{i = 1}^{N} {\text{cov} \left( {a\left( 1 \right),a\left( i \right)} \right)\text{cov} \left( {a\left( 1 \right),a\left( i \right)} \right)} } & {\sum\nolimits_{i = 1}^{N} {\text{cov} \left( {a\left( 1 \right),a\left( i \right)} \right)\text{cov} \left( {a\left( 2 \right),a\left( i \right)} \right)} } & \cdots & {\sum\nolimits_{i = 1}^{N} {\text{cov} \left( {a\left( 1 \right),a\left( i \right)} \right)\text{cov} \left( {a\left( N \right),a\left( i \right)} \right)} } \\ {\sum\nolimits_{i = 1}^{N} {\text{cov} \left( {a\left( 2 \right),a\left( i \right)} \right)\text{cov} \left( {a\left( 1 \right),a\left( i \right)} \right)} } & {\sum\nolimits_{i = 1}^{N} {\text{cov} \left( {a\left( 2 \right),a\left( i \right)} \right)\text{cov} \left( {a\left( 2 \right),a\left( i \right)} \right)} } & \cdots & {\sum\nolimits_{i = 1}^{N} {\text{cov} \left( {a\left( 2 \right),a\left( i \right)} \right)\text{cov} \left( {a\left( N \right),a\left( i \right)} \right)} } \\ \cdots & \cdots & \cdots & \cdots \\ {\sum\nolimits_{i = 1}^{N} {\text{cov} \left( {a\left( N \right),a\left( i \right)} \right)\text{cov} \left( {a\left( 1 \right),a\left( i \right)} \right)} } & {\sum\nolimits_{i = 1}^{N} {\text{cov} \left( {a\left( N \right),a\left( i \right)} \right)\text{cov} \left( {a\left( 2 \right),a\left( i \right)} \right)} } & \cdots & {\sum\nolimits_{i = 1}^{N} {\text{cov} \left( {a\left( N \right),a\left( i \right)} \right)\text{cov} \left( {a\left( N \right),a\left( i \right)} \right)} } \\ \end{array} } \right] \hfill \\ \end{aligned}$$
(9)

In the design of random patterns, every element in the distribution is generated by a random toolbox, so that the columns of measurement matrix A are independent and satisfy the same distribution. Consequently, we have

$$\sum\limits_{i = 1}^{N} {\left( {r\left( {a\left( t \right),a\left( i \right)} \right)} \right)}^{2} = \beta$$
(10)

where \(t = 1,2, \cdots ,N\),\(\beta\) is a constant and \(r\left( {a\left( t \right),a\left( i \right)} \right)\) is the correlation coefficient between the \(t\)th column and \(i\)th column in the measurement matrix A. Then, the elements in diagonal line of the product \(\varOmega\) are expressed as:

$$\begin{aligned} \sum\limits_{i = 1}^{N} {\left( {\text{cov} \left( {a\left( t \right),a\left( i \right)} \right)} \right)}^{2} = & \sum\limits_{i = 1}^{N} {\sigma^{4} \left( {r\left( {a\left( t \right),a\left( i \right)} \right)} \right)}^{2} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; =&\, \sigma^{4} \beta \hfill \\ \end{aligned}$$
(11)

where \(\sigma^{2}\) is the variance of the selected distribution.

Because of the independence of the columns in measurement matrix A, the product of \(r\left( {a\left( t \right),a\left( i \right)} \right)\) and \(r\left( {a\left( {t^{\prime}} \right),a\left( i \right)} \right)\) with \(t \ne t^{\prime}\) satisfies uniform distribution in the open interval \(\left( { - 1, + 1} \right)\), so that we can obtain

$$\sum\limits_{i = 1}^{N} {r\left( {a\left( t \right),a\left( i \right)} \right)r\left( {a\left( {t^{\prime}} \right),a\left( i \right)} \right)} \approx 0$$
(12)

Finally, the elements of the sensing matrix \(\varOmega \left( {t,t^{\prime}} \right)\), \(t \ne t^{\prime}\) are equal to zero and we can obtain \(\varOmega \approx \sigma^{4} \beta E\) which proves that the sensing matrix \(\varPhi\) is orthogonal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, T., Chen, Q., He, W. et al. Improving signal-to-noise ratio performance of compressive imaging based on spatial correlation. Opt Rev 23, 571–578 (2016). https://doi.org/10.1007/s10043-016-0229-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0229-3

Keywords

Navigation