Skip to main content
Log in

A high sampling rate digital holographic imager instrument for the in situ measurements of hydrometeors

  • Special Section: Regular Paper
  • The Eleventh Finland-Japan Joint Symposium on Optics in Engineering, (OIE'15), Joensuu, Finland
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A novel digital in-line holographic imaging instrument designed for acquiring properties of individual hydrometeors in situ is presented. The instrument has a large measurement volume of 670 cm3. This combined with fast frame rate imaging and software controlled multi-exposure capabilities results in a representative sampling of rain and snowfall events. Hydrometeors are measured and analyzed from the in-focus images with microscopic resolution, and their 3D locations inside the measurement volume are determined. The instrument is designed to operate in cold climates and to produce reliable measurements also during strong winds. The imaging rate of the instrument was designed to be adequately high to observe the dynamic nature of rain and snow falls. By recording multi-exposure holograms, the effective frame rate can be increased. This allows the measurements of the velocities of the fast-falling hydrometeors. The instrument and the hologram processing are described; as well as results from laboratory tests and the first field measurements are shown. As a result, the resolving power of the instrument was measured to vary between 11 and 18 microns inside the measurement volume near the center of the field-of-view. Velocity vectors were measured both from multi-exposure and high frame rate holograms. The measured velocities ranged from 0.1 to 4 m/s. In addition, the projections of a flat-shaped and rotating snowflake imaged at different locations inside the measurement volume demonstrated the possibility to estimate the shape of the hydrometeor from multiple viewing angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chandrasekar, V., Keränen, R., Lim, S., Moisseev, D.: Recent advances in classification of observations from dual polarization weather radars. Atmos. Res. 119, 97–111 (2013)

    Article  Google Scholar 

  2. Tyynelä, J., Leinonen, J., Moisseev, D., Nousiainen, T.: Radar backscattering from snowflakes: comparison of fractal, aggregate, and soft spheroid models. J. Atmos. Ocean. Technol. 28, 1365–1372 (2011)

    Article  ADS  Google Scholar 

  3. Krajewski, W.F., Smith, J.A.: Radar hydrology: rainfall estimation. Adv. Water Resour. 25, 1387–1394 (2002)

    Article  ADS  Google Scholar 

  4. Milbrandt, J.A., Yau, M.K., Mailhot, J., Bélair, S., McTaggart-Cowan, R.: Simulation of an orographic precipitation event during IMPROVE-2. Part II: sensitivity to the number of moments in the bulk microphysics scheme. Mon. Weather Rev. 138, 625–642 (2010)

    Article  ADS  Google Scholar 

  5. Kruger, A., Krajewski, W.F.: Two-dimensional video disdrometer: a description. J. Atmos. Ocean. Technol. 19, 602–617 (2002)

    Article  ADS  Google Scholar 

  6. Newman, A.J., Kucera, P.A., Bliven, L.F.: Presenting the snowflake video imager (SVI). J. Atmos. Ocean. Technol. 26, 167–179 (2009)

    Article  ADS  Google Scholar 

  7. Garrett, T.J., Fallgatter, C., Shkurko, K., Howlett, D.: Fallspeed measurement and high-resolution multi-angle photography of hydrometeors in freefall. Atmos. Meas. Tech. Discuss. 5, 4827–4850 (2012)

    Article  Google Scholar 

  8. Gabor, D.: A new microscopic principle. Nature 161(4098), 777–778 (1948)

    Article  ADS  Google Scholar 

  9. Schnars, U., Jüptner, W.P.: Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13, R85 (2002)

    Article  ADS  Google Scholar 

  10. Garcia-Sucerquia, J., Xu, W., Jericho, S.K., Klages, P., Jericho, M.H., Kreuzer, H.J.: Digital in-line holographic microscopy. Appl. Opt. 45, 836–850 (2006)

    Article  ADS  Google Scholar 

  11. Silverman, B.A., Thompson, B.J., Ward, J.H.: A laser-fog disdrometer. J. Appl. Meteorol. 3, 792–801 (1964)

    Article  ADS  Google Scholar 

  12. Raupach, S.M.F., Vössing, H.J., Curtius, J., Borrmann, S.: Digital crossed-beam holography for in situ imaging of atmospheric ice particles. J. Opt. A: Pure Appl. Opt. 8, 796 (2006)

    Article  ADS  Google Scholar 

  13. Fugal, J.P., Shaw, R.A., Saw, E.W., Sergeyev, A.V.: Airborne digital holographic system for cloud particle measurements. Appl. Opt. 43, 5987–5995 (2004)

    Article  ADS  Google Scholar 

  14. Berg, M.J., Videen, G.: Digital holographic imaging of aerosol particles in flight. J. Quant. Spectrosc. Radiat. Transf. 112, 1776–1783 (2011)

    Article  ADS  Google Scholar 

  15. Knollenberg, R.G.: The optical array: an alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteorol. 9, 86–103 (1970)

    Article  ADS  Google Scholar 

  16. Lawson, R.P., O’Connor, D., Zmarzly, P., Weaver, K., Baker, B., Mo, Q., Jonsson, H.: The 2D-S (stereo) probe: design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Ocean. Technol. 23, 1462–1477 (2006)

    Article  ADS  Google Scholar 

  17. Kaikkonen, V., Ekimov, D., Makynen, A.J.: A holographic in-line imaging system for meteorological applications. Instrum Meas IEEE Trans 63, 1137–1144 (2014)

    Article  Google Scholar 

  18. Kaikkonen, V., Makynen, A. J.: A hologram imager instrument for ground plane measurements of hydrometeors. In: Proceedings of the 5th IMEKO TC19 Symposium on Environmental Instrumentation and Measurements, 113–117 (2014)

  19. Jameson, A.R., Kostinski, A.B.: What is a raindrop size distribution? Bull. Am. Meteorol. Soc. 82, 1169–1177 (2001)

    Article  ADS  Google Scholar 

  20. Junge, C.: The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere. J. Meteorol. 12, 13–25 (1955)

    Article  Google Scholar 

  21. Kim, M. K.: Principles and techniques of digital holographic microscopy. J. Photon. Energy 018005–018005 (2010)

  22. Fugal, J.P., Schulz, T.J., Shaw, R.A.: Practical methods for automated reconstruction and characterization of particles in digital in-line holograms. Meas. Sci. Technol. 20, 075501 (2009)

    Article  ADS  Google Scholar 

  23. Pech-Pacheco, J.L., Cristóbal, G., Chamorro-Martinez, J., Fernández-Valdivia, J.: Diatom autofocusing in brightfield microscopy: a comparative study. In: Pattern Recognition, 2000. Proceedings. 15th International Conference on 3, pp. 314–317 (2000)

Download references

Acknowledgments

The authors would like to thank Mr. Timo Arstila for help in preparing the instrument and the USAF1951 holograms, Mr. Timo Kananen for the instrument and server software programming, Mr. Ilkka Leinonen, Mr. Lasse Rajakangas and Mr. Veijo Sutinen for the mechanical design and implementation of the instrument and both the University of Helsinki and the Finnish Meteorological Institute for the possibility to install our instrument in the measurement field at Hyytiälä Forestry Field Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ville A. Kaikkonen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaikkonen, V.A., Mäkynen, A.J. A high sampling rate digital holographic imager instrument for the in situ measurements of hydrometeors. Opt Rev 23, 493–501 (2016). https://doi.org/10.1007/s10043-016-0182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0182-1

Keywords

Navigation