Skip to main content
Log in

A non-contact FBG vibration sensor with double differential temperature compensation

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

This paper has presented a non-contact fiber Bragg grating (FBG) vibration sensor with double differential temperature compensation. Two FBGs and two states of the sensor have been employed to achieve double differential temperature compensation. Based on magnetic coupling and FBG sensing principle, it can be used to realize non-contact measurement of vibration of the rotating shaft. Experimental results show that the working band ranges are within 0–150 Hz; the sensitivity is −0.67 pm/µm, and the linearity is 3.87 % within a range of 2–2.6 mm. The fitting equation of temperature compensation which is caused by structural inflation can be expressed as: Δλ 1′ − Δλ 2′ = 1.51 × T − 32.97. When used to amend a temperature error, the sensor’s temperature error will be reduced to 1.19 % in the range of 25–60 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lee, B.: Review of the present status of optical fiber sensors. Opt. Fiber Technol. 9(2), 57–59 (2003)

    Article  ADS  Google Scholar 

  2. Hill K.O., Meltz, G.: Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 15(8), 1263–1276 (1997)

    Article  ADS  Google Scholar 

  3. Zhou, W., Dong, X., Shen, C., Zhao, C.-L., Chan, C.C., Shum, P.: Temperature-independent vibration sensor with a fiber Bragg grating. Inc. Microwave Opt. Technol. Lett. 52(10), 2282–2285 (2010)

    Article  Google Scholar 

  4. Antunes, P.F.D.C., Lima, H.F.T., Alberto, N.J., Rodrigues, H., et al.: Optical fiber accelerometer system for structural dynamic monitoring. IEEE Sens. J. 9(11), 1347–1354 (2009)

    Article  Google Scholar 

  5. Weng, Y., Qiao, X., Feng, Z., Hu, M., Zhang, J., Yang, Y.: Compact FBG diaphragm accelerometer based on L-shaped rigid cantilever beam”. Chin. Optics Lett. 9(10), 100604 (2011)

  6. Liu, Q.P., Qiao, X.G., Zhao, J.L., et al.: Novel fiber Bragg grating accelerometer based on diaphragm. IEEE Sens. J. 12(10), 3000–3004 (2012)

    Article  Google Scholar 

  7. Ho-kun, M.I., Qiu-ming, N.A.N.: Study on magnetic coupling FBG displacement sensor. In: Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation, August 7–10, Beijing, China (2011)

  8. Li, T., Tan, Y., Wei, L., Zhou, Z., Zheng, K., Guo, Y.: A non-contact fiber Bragg grating vibration sensor. Rev. Sci. Instrum. 85, 015002 (2014)

    Article  ADS  Google Scholar 

  9. Wang, T., He, D., Wang, Z., Wang, Y.: A novel temperature self-compensation FBG vibration sensor. 3rd Int. Photonics OptoElectron. Meet. J. Phys Conf. Ser. 276, 012146 (2011)

    Google Scholar 

  10. Huang, Y., Li, J., Kai, G., Yuan, S., Dong, X.: Temperature compensation package for fiber Bragg gratings. Microwave Opt. Technol. Lett. 39(1), 70–72 (2003)

    Article  Google Scholar 

  11. Iwashima, T., Inoue, A., Shigematsu, M., Nishimura, M., Hattori, Y.: Temperature compensation technique for fiber Bragg gratings using liquid crystalline polymer tubes. Electron. Lett. 33(5), 417–419 (1997)

    Google Scholar 

Download references

Acknowledgments

This project is supported by the National Natural Science Foundation of China (Project No. 51375358).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianliang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Tan, Y., Zhou, Z. et al. A non-contact FBG vibration sensor with double differential temperature compensation. Opt Rev 23, 26–32 (2016). https://doi.org/10.1007/s10043-015-0153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0153-y

Keywords

Navigation