Skip to main content
Log in

Miniaturized diode laser module emitting green light at 532 nm with a power of more than 900 mW for next-generation holographic displays

  • Special Section: Regular Paper
  • Laser Display and Lighting Conference (LDC’15), Yokohama, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We present a micro-integrated laser module based on an amplified diode laser and second harmonic generation which is a promising candidate for a green light source in next-generation 3D holographic displays. The light emitted by the amplified laser has a wavelength of 1064 nm, reaches a power up to 8.2 W and has a long coherence length of >400 m. For second harmonic generation, we tested two geometries of periodically poled lithium niobate crystals in single pass: a bulk crystal and a planar waveguide crystal. With the planar waveguide crystal, we achieve an output power >900 mW and a coherence length >20 m at a wavelength of 532 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Häussler, R., Reichelt, S., Leister, N., Zschau, E., Missbach, R., Schwerdtner, A.: Proc. SPIE 7237, 72370S (2009)

    Article  Google Scholar 

  2. Vierheilig, C., Eichler, C., Tautz, S., Lell, A., Müller, J., Kopp, F., Stojetz, B., Hager, T., Brüderl, G., Avramescu, A., Lermer, T., Ristic, J., Strauss, U.: Proc. SPIE 8277, 82770K (2012)

    Article  ADS  Google Scholar 

  3. Xu, L., Zhang, H., Mao, Y., Deng, B.O., Yu, X., He, J., Xing, J., Xin, J.: Laser Phys. Lett. 11, 115809 (2014)

    Article  ADS  Google Scholar 

  4. Trikshev, A.I., Kurkov, A.S., Tsvetkov, V.B.: IEEE J. Quantum Electron. 42, 417 (2012)

    Article  Google Scholar 

  5. Nguyen, H.K., Hu, M.H., Li, Y., Song, K., Visovsky, N.J., Coleman, S., Zah, C.-E.: Proc. SPIE 6890, 68900I (2008)

    Article  ADS  Google Scholar 

  6. Achtenhagen, M., Amarasinghe, N.V., Evans, G.A.: Electron. Lett. 43, 755–757 (2007)

    Article  Google Scholar 

  7. Achtenhagen, M., Hardy, A., Harder, C.S.: IEEE Photonics Technol. Lett. 18, 526–528 (2006)

    Article  ADS  Google Scholar 

  8. Spiessberger, S., Schiemangk, M., Wicht, A., Wenzel, H., Erbert, G., Tränkle, G.: Appl. Phys. B 104, 813–818 (2011)

    Article  ADS  Google Scholar 

  9. Jedrzejczyk, D., Brox, O., Bugge, F., Fricke, J., Ginolas, A., Paschke, K., Wenzel, H., Erbert, G.: Proc. SPIE 7583, 758317 (2010)

    Article  Google Scholar 

  10. Sumpf, B., Hasler, K.-H., Adamiec, P., Bugge, F., Fricke, J., Ressel, P., Wenzel, H., Erbert, G., Tränkle, G.: Proc. SPIE 7230, 72301E (2009)

    Article  Google Scholar 

  11. Jensen, O.B., Sumpf, B., Erbert, G., Petersen, P.M.: IEEE Photonics Technol. Lett. 23, 1624–1626 (2001)

    Article  ADS  Google Scholar 

  12. Spiessberger, S., Schiemangk, M., Sahm, A., Wicht, A., Wenzel, H., Fricke, J., Erbert, G.: Proc. SPIE 7953, 795311 (2011)

    Article  Google Scholar 

  13. Spiessberger, S., Schiemangk, M., Sahm, A., Bugge, F., Fricke, J., Wenzel, H., Wicht, A., Erbert, G., Tränkle, G.: Proc. SPIE 8246, 82460I (2012)

    Article  ADS  Google Scholar 

  14. Ashkin, A., Boyd, G.D., Dziedzic, J.M., Smith, R.G., Ballman, A.A., Levinstein, J.J., Nassau, K.: Appl. Phys. Lett. 9, 72–74 (1966)

    Article  ADS  Google Scholar 

  15. Furukawa, Y., Kitamura, K., Alexandrovski, A., Route, R.K., Fejer, M.M., Foulon, G.: Appl. Phys. Lett. 78, 1970–1972 (2001)

    Article  ADS  Google Scholar 

  16. L. Arizmendi: physica status solidi A 256–283 (2004)

  17. Hum, D.S., Fejer, M.M.: Comptes Rendus Physique 8, 180–198 (2007)

    Article  ADS  Google Scholar 

  18. Miller, G.D., Batchko, R.G., Tulloch, W.M., Weise, D.R., Fejer, M.M., Byer, R.L.: Opt. Lett. 22, 1834–1836 (1997)

    Article  ADS  Google Scholar 

  19. Jensen, O.B., Andersen, P.E., Sumpf, B., Hasler, K.-H., Erbert, G., Petersen, P.M.: Opt. Express 17, 6532–3539 (2009)

    Article  ADS  Google Scholar 

  20. Gan, Y., Lu, Y., Xu, Q., Xu, C.-Q.: IEEE Photonics Technol. Lett. 25, 75–77 (2013)

    Article  ADS  Google Scholar 

  21. Liu, P.Q., Fiebig, C., Uebernickel, M., Blume, G., Feise, D., Sahm, A., Jedrzejczyk, D., Paschke, K., Erbert, G.: Proc. SPIE 7917, 791704 (2011)

    Article  Google Scholar 

  22. Tovstonog, S.V., Kurimura, S., Kitamura, K.: Appl. Phys. Lett. 90, 051115 (2007)

    Article  ADS  Google Scholar 

  23. Louchev, O.A., Yu, N.E., Kurimura, S., Kitamura, K.: Appl. Phys. Lett. 87, 131101 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank all the colleagues at the Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik who contributed to this work. This work was funded by the Korean government for the global joint project “Development of narrow-band Red/Blue/Green compact laser modules for the next-generation 3D-LCDTV (HolographicTV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Hofmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, J., Blume, G., Jedrzejczyk, D. et al. Miniaturized diode laser module emitting green light at 532 nm with a power of more than 900 mW for next-generation holographic displays. Opt Rev 23, 141–145 (2016). https://doi.org/10.1007/s10043-015-0149-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0149-7

Keywords

Navigation