Skip to main content
Log in

Frequency scanning interferometry with nanometer precision using a vertical-cavity surface-emitting laser diode under scanning speed control

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Frequency scanning interferometry technique with a nanometer precision using a vertical-cavity surface-emitting laser diode (VCSEL) is presented. Since the frequency scanning of the VCSEL is linearized by the phase-locked-loop technique, the gradient of the interference fringe order can be precisely determined using linear least squares fitting. This enables a length measurement with a precision better than a quarter wavelength, and the absolute fringe number including the integer part at the atomic transition spectrum (rubidium-D2 line) is accurately determined. The validity of the method is demonstrated by excellent results of block gauge measurement with a root mean square error better than 5 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tsai, M., Huang, H., Itoh, M., Yatagai, T.: Opt. Rev. 6, 449 (1999)

    Article  Google Scholar 

  2. Decker, J.E., Miles, J.R., Madej, A.A., Siemsen, R.F., Siemsen, K.J., de Bonth, S., Bustraan, K., Temple, S., Pekelsky, R.: Appl. Opt. 42, 5670 (2003)

    Article  ADS  Google Scholar 

  3. Dai, X., Seta, K.: Meas. Sci. Technol. 9, 1031 (1998)

    Article  Google Scholar 

  4. Bitou, Y., Seta, K.: Jpn. J. Appl. Phys. 39, 6084 (2000)

    Article  ADS  Google Scholar 

  5. Bitou, Y., Seta, K.: Jpn. J. Appl. Phys. 41, 384 (2002)

    Article  ADS  Google Scholar 

  6. Hibino, K., Tani, Y., Bitou, Y., Takatsuji, T., Warisawa, S., Mitsuishi, M.: Appl. Opt. 50, 962 (2011)

    Article  ADS  Google Scholar 

  7. Liu, S.H., Chiueh, C.I., Lee, C.C.: Appl. Opt. 41, 5866 (2002)

    Article  ADS  Google Scholar 

  8. Davila, A., Huntley, J.M., Pallikarakis, C., Ruiz, P.D., Coupland, J.M.: Opt. Laser. Eng. 50, 1089 (2012)

    Article  Google Scholar 

  9. Yamamoto, A., Kuo, C.C., Sunouchi, K., Wada, S., Yamaguchi, I., Tashiro, H.: Opt. Rev. 8, 59 (2001)

    Article  Google Scholar 

  10. Kuwamura, S., Yamaguchi, I.: Appl. Opt. 36, 4473 (1997)

    Article  ADS  Google Scholar 

  11. Kikuta, H., Iwata, K., Nagata, R.: Appl. Opt. 25, 2976 (1986)

    Article  ADS  Google Scholar 

  12. Ishii, Y.: Opt. Rev. 6, 273 (1999)

    Article  Google Scholar 

  13. Kakuma, S., Katase, Y.: Opt. Rev. 17, 481 (2010)

    Article  Google Scholar 

  14. Kakuma, S., Katase, Y.: Opt. Rev. 19, 376 (2012)

    Article  Google Scholar 

  15. Kakuma, S., Ohba, R.: Opt. Commun. 239, 445 (2004)

    Article  ADS  Google Scholar 

  16. Barwood, G.P., Rowley, W.R.C.: Appl. Phys. B 53, 142 (1991)

    Article  ADS  Google Scholar 

  17. Ciddor, P.E.: Appl. Opt. 35, 1566 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichi Kakuma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakuma, S. Frequency scanning interferometry with nanometer precision using a vertical-cavity surface-emitting laser diode under scanning speed control. Opt Rev 22, 869–874 (2015). https://doi.org/10.1007/s10043-015-0140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0140-3

Keywords

Navigation