Skip to main content

Advertisement

Log in

Advances and new functions of VCSEL photonics

  • Special Section: The Commemoration of the Twentieth Anniversary of the Optical Review
  • Invited Review Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A vertical cavity surface emitting laser (VCSEL) was born in Japan. The 37 years’ research and developments opened up various applications including datacom, sensors, optical interconnects, spectroscopy, optical storages, printers, laser displays, laser radar, atomic clock and high power sources. A lot of unique features have been already proven, such as low power consumption, a wafer level testing and so on. The market of VCSELs has been growing up rapidly and they are now key devices in local area networks based on multi-mode optical fibers. Optical interconnections in data centers and supercomputers are attracting much interest. In this paper, the advances on VCSEL photonics will be reviewed. We present the high-speed modulation of VCSELs based on a coupled cavity structure. For further increase in transmission capacity per fiber, the wavelength engineering of VCSEL arrays is discussed, which includes the wavelength stabilization and wavelength tuning based on a micro-machined cantilever structure. We also address a lateral integration platform and new functions, including high-resolution beam scanner, vortex beam creation and large-port free space wavelength selective switch with a Bragg reflector waveguide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Iga: IEEE J. Sel. Top. Quantum Electron. 6 (2000) 1201.

    Article  Google Scholar 

  2. K. Iga: Jpn. J. Appl. Phys. 47 (2008) 1.

    Article  ADS  Google Scholar 

  3. F. Koyama: J. Lightwave Technol. 24 (2006) 4502.

    Article  ADS  Google Scholar 

  4. H. Soda, K. Iga, C. Kitahara, and Y. Suematsu: Jpn. J. Appl. Phys. 18 (1979) 2329.

    Article  ADS  Google Scholar 

  5. K. Iga, S. Kinoshita, and F. Koyama: Electron. Lett. 23 (1987) 134.

    Article  ADS  Google Scholar 

  6. F. Koyama, S. Kinoshita, and K. Iga: Appl. Phys. Lett. 55 (1989) 221.

    Article  ADS  Google Scholar 

  7. J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez: Electron. Lett. 25 (1989) 1123.

    Article  Google Scholar 

  8. R. S. Geels, S. W. Corzine, and L. A. Coldren: IEEE J. Quantum Electron. 27 (1991) 1359.

    Article  ADS  Google Scholar 

  9. D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers: Appl. Phys. Lett. 65 (1994) 97.

    Article  ADS  Google Scholar 

  10. K. D. Choquette, K. M. Geib, C. I. H. Ashby, C. I. H. Twesten, R. D. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull: IEEE J. Sel. Top. Quantum Electron. 3 (1997) 916.

    Article  Google Scholar 

  11. Y. Hayashi, T. Mukaihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, and K. Iga: IEEE Photonics Technol. Lett. 7 (1995) 1234.

    Article  ADS  Google Scholar 

  12. K. L. Lear, K. D. Choquette, R. P. Schneider, Jr., S. P. Kilcoyne, and K. M. Geib: Electron. Lett. 31 (1995) 208.

    Article  Google Scholar 

  13. R. Jäger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Wigl, and K. J. Ebeling: Electron. Lett. 33 (1997) 330.

    Article  Google Scholar 

  14. T. Baba, Y. Yogo, K. Suzuki, F. Koyama, and K. Iga: Electron. Lett. 29 (1993) 913.

    Article  Google Scholar 

  15. N. Nishiyama, M. Arai, S. Shinada, M. Azuchi, T. Miyamoto, F. Koyama, and K. Iga: IEEE J. Sel. Top. Quantum Electron. 7 (2001) 242.

    Article  Google Scholar 

  16. J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Zh. I. Alferov, and D. Bimberg: Electron. Lett. 36 (2000) 1384.

    Article  Google Scholar 

  17. K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone: Electron. Lett. 36 (2000) 1388.

    Article  Google Scholar 

  18. A. Karim, P. Abraham, D. Lofgreen, Y.-J. Chiu, J. Piprek, and J. Bowers: Appl. Phys. Lett. 78 (2001) 2632.

    Article  ADS  Google Scholar 

  19. M. Ortsiefer, S. Baydar, K. Windhorn, E. Ronneberg, J. Rosskopf, R. Shau, M. Grau, G. M. Bohm, and M.-C. Amann: Electron. Lett. 41 (2005) 807.

    Article  Google Scholar 

  20. N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. Hu, X. Liu, M. J. Li, R. Bhat, and C.-E. Zah: IEEE J. Sel. Top. Quantum Electron. 11 (2005) 990.

    Article  Google Scholar 

  21. V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon: IEEE Photonics Technol. Lett. 17 (2005) 947.

    Article  ADS  Google Scholar 

  22. W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann: IEEE Photonics Technol. Lett. 18 (2006) 424.

    Article  ADS  Google Scholar 

  23. T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang: Appl. Phys. Lett. 97 (2010) 071114.

    Article  ADS  Google Scholar 

  24. K. Johnson, M. Hibbs-Brenner, W. Hogan, and M. Dummer: Adv. Opt. Technol. 2012 (2012) 569379.

    Article  Google Scholar 

  25. C. L. Felix, W. W. Bewley, I. Vurgaftman, J. R. Meyer, L. Goldberg, D. H. Chow, and E. Selvig: Appl. Phys. Lett. 71 (1997) 3483.

    Article  ADS  Google Scholar 

  26. A. Larsson: IEEE J. Sel. Top. Quantum Electron. 17 (2011) 1552.

    Article  Google Scholar 

  27. P. K. Pepeljugoski, J. A. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner: Optical Fiber Communication Conf., 2012, OThX2.

    Google Scholar 

  28. A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg: Appl. Phys. Lett. 95 (2009) 131101.

    Article  ADS  Google Scholar 

  29. N. Suzuki, T. Anan, H. Hatakeyama, K. Fukatsu, K. Yshiki, K. Tokutome, T. Akagawa, and M. Tsuji: IEICE Trans. Electron. E92-C (2009) 942.

    Article  ADS  Google Scholar 

  30. P. Westbergh, R. Safaisini, E. Haglund, B. Kogel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel: Electron. Lett. 48 (2012) 1145.

    Article  Google Scholar 

  31. C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. P. Lee: IEEE J. Quantum Electron. 27 (1991) 1368.

    Article  ADS  Google Scholar 

  32. F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga: IEEE Photonics Technol. Lett. 7 (1995) 10.

    Article  ADS  Google Scholar 

  33. K. Yang, Y. Zhou, X. D. Huang, C. P. Hains, and J. Cheng: IEEE Photonics Technol. Lett. 12 (2000) 377.

    Article  ADS  Google Scholar 

  34. J. A. Kash, F. E. Doany, L. Schares, C. L. Schow, C. Schuster, D. M. Kuchta, P. K. Pepeljugoski, J. M. Trewhella, C. W. Baks, R. A. John, L. Shan, Y. H. Kwark, R. A. Budd, P. Chiniwalla, F. R. Libsch, J. Rosner, C. K. Tsang, C. S. Patel, J. D. Schaub, D. Kucharski, D. Guckenberger, S. Hedge, H. Nyikal, R. Dangel, F. Horst, B. J. Offrein, C. K. Lin, A. Tandon, G. R. Trott, A. Nystrom, D. Bour, M. R. T. Tan, and D. W. Dolfi: Optical Fiber Communication Conf., 2006, OFA3.

    Google Scholar 

  35. C. J. Chang-Hasnain: IEEE J. Sel. Top. Quantum Electron. 6 (2000) 978.

    Article  Google Scholar 

  36. M. C. Larson, B. Pezeshki, and J. S. Harris: IEEE Photonics Technol. Lett. 7 (1995) 382.

    Article  ADS  Google Scholar 

  37. M. Maute, B. Kogel, G. Bohm, P. Meissner, and M.-C. Amann: IEEE Photonics Technol. Lett. 18 (2006) 688.

    Article  ADS  Google Scholar 

  38. C. Chen and K. D. Choquette: J. Lightwave Technol. 28 (2010) 1003.

    Article  ADS  Google Scholar 

  39. T. D. Germann, W. Hofmann, A. M. Nadtochiy, J. Schulze, A. Mutig, A. Strittmatter, and D. Bimberg: Opt. Express 20 (2012) 5099.

    Article  ADS  Google Scholar 

  40. H. Dalir and F. Koyama: IEICE Electron. Express 8 (2011) 1075.

    Article  Google Scholar 

  41. T. Shimada, A. Matsutani, and F. Koyama: Appl. Opt. 53 (2014) 1766.

    Article  ADS  Google Scholar 

  42. H. Dalir, Y. Takahashi, and F. Koyama: Electron. Lett. 50 (2014) 101.

    Article  Google Scholar 

  43. P. Yeh and A. Yariv: J. Opt. Soc. Am. 68 (1978) 1196.

    Article  ADS  Google Scholar 

  44. Y. Sakurai and F. Koyama: Jpn. J. Appl. Phys. 43 (2004) 5828.

    Article  ADS  Google Scholar 

  45. M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos: J. Opt. Soc. Am. B 19 (2002) 2052.

    Article  ADS  Google Scholar 

  46. E. Mizuta, H. Watanabe, and T. BaBa: Jpn. J. Appl. Phys. 45 (2006) 6116.

    Article  ADS  Google Scholar 

  47. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss: Opt. Lett. 33 (2008) 147.

    Article  ADS  Google Scholar 

  48. A. Larsson, C. Carlsson, J. Gustavsson, _A. Haglund, P. Modh, and J. Bengtsson: New J. Phys. 6 (2004) 176.

    Article  ADS  Google Scholar 

  49. X. Zhao, Y. Zhou, C. J. Chang-Hasnain, W. Hofmann, and M. C. Amann: Opt. Express 14 (2006) 10500.

    Article  ADS  Google Scholar 

  50. R. Gordon, A. P. Heberle, and J. R. A. Cleaver: Appl. Phys. Lett. 81 (2002) 4523.

    Article  ADS  Google Scholar 

  51. L. Bach, W. Kaiser, J. P. Reithmaier, A. Forchel, T. W. Berg, and B. Tromborg: Electron. Lett. 39 (2003) 1592.

    Article  Google Scholar 

  52. G. Morthier, R. Schard, and O. Kjebon: IEEE J. Quantum Electron. 36 (2000) 1468.

    Article  ADS  Google Scholar 

  53. U. Troppenz, J. Kreissl, W. Rehbein, C. Bornholdt, T. Gaertner, M. Radziunas, A. Glitzky, U. Bandelow, and M. Wolfrum: Proc. ECOC 2006, 2006, Th4.5.5.

    Google Scholar 

  54. H. Dalir and F. Koyama: Appl. Phys. Lett. 103 (2013) 091109.

    Article  ADS  Google Scholar 

  55. H. Dalir and F. Koyama: Appl. Phys. Express 7 (2014) 022102.

    Article  ADS  Google Scholar 

  56. W. Janto, K. Hasebe, N. Nishiyama, C. Caneau, T. Sakaguchi, A. Matsutani, P. Babu Dayal, F. Koyama, and C. E. Zah: IEEE Int. Semiconductor Laser Conf., 2006, PD1.1.

    Google Scholar 

  57. H. Sano, A. Matsutani, and F. Koyama: Appl. Phys. Express 2 (2009) 072101.

    Article  ADS  Google Scholar 

  58. M. Nakahama, T. Sakaguchi, A. Matustani, and F. Koyama: Opt. Express 22 (2014) 21471.

    Article  ADS  Google Scholar 

  59. M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama: IEEE Photonics Technol. Lett. 25 (2013) 1747.

    Article  ADS  Google Scholar 

  60. H. Dalir, Y. Takahashi, and F. Koyama: European Conf. Optical Fiber Communication, 2014, Mo.4.4.6.

    Google Scholar 

  61. O. Bryngdahl: J. Opt. Soc. Am. 63 (1973) 416.

    Article  ADS  Google Scholar 

  62. F. Koyama and X. Gu: IEEE J. Sel. Top. Quantum Electron. 19 (2013) 1701510.

    Article  Google Scholar 

  63. S. Mochizuki, X. Gu, K. Tanabe, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama: Appl. Phys. Express 7 (2014) 022502.

    Article  ADS  Google Scholar 

  64. X. Gu and F. Koyama: Optical Fiber Communication Conf., 2014, Th3F.1.

    Google Scholar 

  65. F. Xiao, W. Hu, and A. Xu: Appl. Opt. 44 (2005) 5429.

    Article  ADS  Google Scholar 

  66. Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda: Nat. Photonics 4 (2010) 447.

    Article  ADS  Google Scholar 

  67. X. Gu, T. Shimada, and F. Koyama: Opt. Express 19 (2011) 22675.

    Article  ADS  Google Scholar 

  68. X. Gu, T. Shimada, A. Matsutani, and F. Koyama: IEEE Photonics J. 4 (2012) 1712.

    Article  Google Scholar 

  69. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman: Phys. Rev. A 45 (1992) 8185.

    Article  ADS  Google Scholar 

  70. X. Gu, K. Seno, H. Tanobe, and F. Koyama: European Conf. Optical Fiber Communications, 2014, We.3.5.3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyama, F. Advances and new functions of VCSEL photonics. OPT REV 21, 893–904 (2014). https://doi.org/10.1007/s10043-014-0142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-014-0142-6

Keywords

Navigation