Skip to main content
Log in

Selective phase masking to reduce material saturation in holographic data storage systems

  • Special Section: The 23rd International Symposium on Optical Memory “ISOM’13, Korea”
  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Emerging networks and applications require enormous data storage. Holographic techniques promise high-capacity storage, given resolution of a few remaining technical issues. In this paper, we propose a technique to overcome one such issue: mitigation of large magnitude peaks in the stored image that cause material saturation resulting in readout errors. We consider the use of ternary data symbols, with modulation in amplitude and phase, and use a phase mask during the encoding stage to reduce the probability of large peaks arising in the stored Fourier domain image. An appropriate mask is selected from a predefined set of pseudo-random masks by computing the Fourier transform of the raw data array as well as the data array multiplied by each mask. The data array or masked array with the lowest Fourier domain peak values is recorded. On readout, the recorded array is multiplied by the mask used during recording to recover the original data array. Simulations are presented that demonstrate the benefit of this approach, and provide insight into the appropriate number of phase masks to use in high capacity holographic data storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. van Heerden: Appl. Opt. 2 (1963) 393.

    Article  ADS  Google Scholar 

  2. J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox: IBM J. Res. Dev. 44 (2000) 341.

    Article  Google Scholar 

  3. B. Das, J. Joseph, and K. Singh: Opt. Commun. 282 (2009) 177.

    Article  ADS  Google Scholar 

  4. J. F. Heanue, M. C. Bashaw, and L. Hesselink: Science 265 (1994) 749.

    Article  ADS  Google Scholar 

  5. R. John, J. Joseph, and K. Singh: Opt. Lasers Eng. 43 (2005) 183.

    Article  Google Scholar 

  6. J. Reményi, P. Várhegyi, L. Domján, P. Koppa, and E. Lõrincz: Appl. Opt. 42 (2003) 3428.

    Article  ADS  Google Scholar 

  7. G. W. Burr, G. Barking, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, and M. A. Neifeld: Opt. Lett. 23 (1998) 1218.

    Article  ADS  Google Scholar 

  8. J. Joseph and D. A. Waldman: Appl. Opt. 45 (2006) 6374.

    Article  ADS  Google Scholar 

  9. J.-S. Jang and D.-H. Shin: Opt. Lett. 26 (2001) 1797.

    Article  ADS  Google Scholar 

  10. R. John, J. Joseph, and K. Singh: Opt. Rev. 12 (2005) 155.

    Article  Google Scholar 

  11. S. Phillips and I. Fair: to be published in IEICE Trans. Electron.

  12. C. B. Burckhardt: Appl. Opt. 9 (1970) 695.

    Article  ADS  Google Scholar 

  13. J. Hong, I. McMichael, and J. Ma: Opt. Lett. 21 (1996) 1694.

    Article  ADS  Google Scholar 

  14. M. J. O’Callaghan, J. R. McNeil, C. Walker, and M. A. Handschy: Proc. SPIE 6282 (2006) 628208.

    Article  Google Scholar 

  15. F. Przygodda, J. Knittel, O. Malki, H. Trautner, and H. Richter: Opt. Rev. 16 (2009) 583.

    Article  Google Scholar 

  16. Y. Saita, T. Nomura, E. Nitanai, and T. Numata: Jpn. J. Appl. Phys. 50 (2011) 09ME03.

    Article  Google Scholar 

  17. Q. Gao and R. Kostuk: Appl. Opt. 36 (1997) 4853.

    Article  ADS  Google Scholar 

  18. G. Berger, M. Dietz, and C. Denz: J. Opt. A 10 (2008) 115305.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Phillips.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phillips, S., Fair, I. Selective phase masking to reduce material saturation in holographic data storage systems. OPT REV 21, 585–590 (2014). https://doi.org/10.1007/s10043-014-0093-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-014-0093-y

Keywords

Navigation